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Abstract: Pipelining is a means of obtaining fast sampling and processing speed in
hardware implementation of digital systems and it requires a look ahead system
model for the pipelined system. However, existing methods for the design of look
ahead system models are only for stable systems and hence are not applicable to
unstable digital controllers for closed loop system control. In this paper a periodic
method is presented for the design of look ahead system models for unstable digital
controllers. Analysis is carried out to show that the pipelined implementation of the
unstable digital controller using the proposed periodic look ahead system model
can maintain the closed loop control system stability. Copyright c©2005 IFAC
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1. INTRODUCTION

Most feedback controllers in modern industrial
control systems are implemented with digital inte-
grated circuits. And it has been an ever increasing
demand from manufacturers and users that the
equipment and devices of digital controllers have
faster and more efficient processing ability, less
energy consumption and more mobility in terms
of size and weight. Hence, an objective of control
system engineers is to design faster and more effi-
cient algorithms for integrated circuit fabrication
and implementation of digital controllers.

Pipelining is one of the approaches to speeding
up processing and operations in digital processors.
Methods and algorithms for pipelining IIR (in-
finite impulse response) dynamical systems have
been given in the past years in the signal pro-
cessing and circuits and systems communities, e.g.
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(Lim and Liu, 1992; Lapointe et al., 1993; Kat-
sushige et al., 1999; Parhi, 1999; Living et al.,
2001; Meyer-Baese, 2001). It has been shown that
a special model called look ahead system (Lim and
Liu, 1992; Katsushige et al., 1999; Parhi, 1999;
Living et al., 2001; Meyer-Baese, 2001) is to be
used for pipelining of digital IIR systems. Further,
two essential problems in the design of look ahead
filters are stability and computational complexity
(Lim and Liu, 1992; Parhi, 1999).

The look ahead system model of the pipelined
digital system is to be quantized for hardware
implementation which may introduce instability
to the system. It turned out that stabilizing look
ahead systems with minimum possible computa-
tional complexity is a very hard problem and so
far there has been no analytical LTI (linear time
invariant) solution to such a problem. Recently,
a periodic method is presented to deal with the
stabilization and computational complexity prob-
lems in the design of look ahead systems (Zhang
and Xie, 2001). It is noted that all the LTI and pe-



riodic methods for the design of look ahead system
models are for originally stable digital systems
which are to be pipelined.

Although most digital filters and processors ap-
plied in signal processing, telecommunications and
circuits and systems areas are stable systems,
unstable digital controllers can be often used in
many industrial applications which include popu-
lar PID controllers. When the unstable controller
is pipelined for hardware implementation, it is
essential that the look ahead system model for the
controller can maintain the closed loop system sta-
bility. While there have been no LTI methods to
deal with the design of look ahead system models
for unstable digital systems, this paper extends
the periodic method in (Zhang and Xie, 2001)
to the design of look ahead system models for
unstable controllers. It will be shown that the
pipelined unstable digital controller designed us-
ing the proposed periodic method can maintain
the closed loop system stability.

2. PIPELINING DIGITAL CONTROLLERS

2.1 Pipelining process

Let z−1 denote the back shift operator such that
z−1uk = uk−1. In a digital closed loop control
system, the digital controller produces a sequence
of discrete control signals for controlling the plant
using the sampled measurement of the plant out-
put. Let uk and yk denote the control input and
sampled output of the controlled plant, respec-
tively. A linear time invariant (LTI) nth order
single-input single-output digital controller is a
dynamical system with yk as input and uk as out-
put and can be written in the following polynomial
equation form

A(z−1)uk = B(z−1)yk, (1)

where A(z−1) and B(z−1) are polynomials in z−1

written as

A(z−1) = 1 + a1z
−1 + · · · + anz−n,

B(z−1) = b1z
−1 + b2z

−2 + · · · + bnz−n,
(2)

with ai, bj ∈ R, 1 ≤ i, j ≤ n, an 6= 0. If
ai = 0,∀1 ≤ i ≤ n, the controller is an FIR (finite
impulse response) system. Otherwise, it is an
IIR (infinite impulse response) system. The LTI
system (1) is stable if all zeros of the polynomial
equation A(z−1) = 0 in terms of z−1 are strictly
outside the unit circle in the complex z−1-plane.
In this case we call A(z−1) a stable polynomial.
For simplicity and without loss of generality, we
omitted the external reference input to the above
described closed loop system.

In practical control systems, the digital controller
is often implemented with digital integrated cir-
cuit. For given hardware resource, the control up-
dating rate of the digital controller can be signifi-
cantly improved by pipelining, leading to feedback
control of the plant with fast sampling and con-
trol rate. To show the elementary mechanism and
process in pipelining multipliers, we first consider
that the digital controller (1) is a very simple first
order FIR digital system

uk = b1z
−1yk, (3)

with a single coefficient b1. Let M(b1) denote the
operation of multiplication by b1. A conventional
block diagram of the first order system is shown
in Figure 1 (I). Under this scheme, each multipli-
cation operation is performed in one sampling pe-
riod to obtain the system output. Assume that the
available hardware can perform each elementary
multiplication operation in TM sec.. The fastest
achievable sampling rate of the system is 1

TM

Hz.

M(b1)

(I) (II)

M0(b1)

M1(b1)

Md−1(b1)

yk

yk

uk

uk z−1

z−1

z−1

z−1

Fig. 1. (I) Conventional block diagram; (II) d-step
pipelined block diagram of uk = b1z

−1yk.

According to the integrated circuit implementa-
tion scheme, the multiplication operation can be
divided into a number of stages. This forms the
elementary mechanism for pipelining multipliers
and then the operation M(b1) can be decomposed
into d-stages and expressed as

M(b1) = Md−1(b1) ◦ · · · ◦ M1(b1) ◦ M0(b1). (4)

Registers are then inserted between each two con-
nected stages. This yields the d-stage pipelined
digital system, whose block diagram is shown in
Figure 1 (II). Assume that the time required for
carrying out each divided multiplying operation
is equally allocated, i.e. each divided multiply-
ing operation takes TM

d
sec. to complete. With

the d divided multiplying operations performing
simultaneously, the fastest sampling rate of the
pipelined system is d

TM

Hz. Thus the pipelining
can increase the sampling rate of the system by
d times. With respect to the fast pipelined sam-
pling rate, the input-output relationship of the
pipelined system is uk = b1z

−dyk, where the d-
step delay is equivalent to TM sec.. It shows that



the fast rate pipelined input-output relationship
is identical to that of (3).

In fact, it is easy to verify that each of the
multipliers can be pipelined following the same
procedure if (1) is an nth order FIR system
and the input-output relationship of the original
system is preserved.

For pipelining IIR systems, we first consider that
(1) is a simple first order IIR system written as

(1 + a1z
−1)uk = b0yk. (5)

For simplicity, let us consider the 2-stage pipelin-
ing for the first order IIR system (5), i.e. d = 2.
If the multiplication operations M(a1) and M(b0)
are replaced by their 2-stage divided multiplica-
tion operations with a delay latch inserted be-
tween the divided operations as shown in Figure 2,
then the input-output relationship of this scheme
is (1 + a1z

−2)uk = b0z
−1yk, whose input-output

relation is no longer equivalent to that of the
original system (5). This shows that pipelining
multiplication operations in the system feedback
path cannot be implemented by simply inserting
the stage divided multiplication operations into
the path as that for FIR systems.

M0(b0) M1(b0)

M0(a1)M1(a1)

yk uk

z−1z−1

z−1 +
−

Fig. 2. Block diagram of the changed IIR system
(5) after delay latches insertion.

To solve this 2-stage pipelining problem of the first
order IIR system (5), we multiply both sides of the
IIR system (5) by a polynomial factor 1 − a1z

−1,
yielding

(1 − α2z
−2)uk = (β0 + β1z

−1)yk, (6)

where α2 = a2
1, β0 = b0 and β1 = −a1b0. This is

an equivalent expression of the IIR system (5) and
it can be pipelined as shown by the block diagram
in Figure 3, where the fastest achievable sampling
rate of the 2-stage pipelining process is 2

TM

.
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Fig. 3. 2-step pipelining of the IIR system (6)

3. LOOK AHEAD SYSTEMS FOR
PIPELINING

3.1 LTI look ahead systems

As shown in the last section, the model (6) is
essential for pipeline implementation of the IIR
system (5), which is called look ahead system of
(5). This is in fact also true for the general case of
d-stage pipelining of the nth order IIR system in
the form (1). In such a general case, the nth order
IIR system is to be modelled into the look ahead
system form whose output uk+d is independent of
its last d− 1 outputs {uk+d−1, uk+d−2, · · · , uk+1}.
To be specific, an LTI d-step look ahead system is
written as

α(z−1)ûk = β(z−1)yk, (7)

where yk, ûk ∈ R are, respectively, the system
input and output,

α(z−1) = 1 − αdz
−d − αd+1z

−d−1 − · · · − αn̂z−n̂,

β(z−1) = β1z
−1 + β2z

−2 + · · · + βn̂z−n̂,

with αi, βj ∈ R, 1 ≤ i, j ≤ n̂ and n̂ is the order
of the look ahead system. It is noted that the
coefficients of α(z−1) for the terms z−l, 1 ≤ l ≤
d − 1, are all zero, so ûk+d is independent of its
last d − 1 outputs.

Given a stable LTI system, an analytical solution
for a stable d-step LTI look ahead system whose
order is d times as high as that of the original
system which introduces considerably more com-
putational load, can be easily found (Zhang and
Xie, 2001). In the past years, several LTI methods
were studied for the design of stable look head sys-
tems with minimum possible order for pipelining
of stable IIR systems in circuits and signal pro-
cessing areas (Lim and Liu, 1992; Parhi, 1999; Liv-
ing et al., 2001).

Moreover, if the IIR digital system is unstable
there are no analytical and numerical approaches
to the design of its look ahead systems for the
pipelining implementation. While stable digital
systems exist in many applications such as signal
processing and telecommunications, many digital
feedback controllers are unstable systems, which
include popular PID controllers with the integral
control action. In the following, we present a
periodic approach to the design of stable look
ahead systems for unstable controllers.

3.2 Periodic look ahead systems

An nth order linear periodic system with period
N can be written in the following form

P (k, z−1)uk = Q(k, z−1)yk, (8)



where P (k, z−1) and Q(k, z−1) are periodically
time-varying polynomials in z−1 of the form

P (k, z−1) = 1 + p1,kz−1 + p2,kz−2 + · · · + pn,kz−n,(9)

Q(k, z−1) = q1,kz−1 + q2,kz−2 + · · · + qn,kz−n,

pi,k, qj,k ∈ R, 1 ≤ i, j ≤ n, are N -periodic
coefficients satisfying pi,k = pi,k+N , qj,k =
qj,k+N , and there exists some k such that pn,k 6= 0.

The N -periodic system (8) has a state space
realization which can be written as

xk+1 = Akxk + Bkyk, uk = Ckxk,

where xk ∈ Rn is the state vector, Ak ∈ Rn×n,
Bk ∈ Rn×1 and Ck ∈ R1×n are N -periodic
matrices satisfying Ak = Ak+N , Bk = Bk+N and
Ck = Ck+N . Let

Ā = AN−1AN−2 · · ·A1A0 ∈ Rn×n, (10)

and define

Definition 1. The N -periodic system (8) is stable
if and only if all the eigenvalues of the matrix Ā,
denoted by λi(Ā), i = 1, 2, · · · , n, satisfy |λi(Ā)| <

1. 2

It can be shown that the stability of the periodic
system (8) is characterized only by the polyno-
mial P (k, z−1). Thus we call P (k, z−1) a stable

polynomial if (8) is a stable system.

Let F̂ (k, z−1) be an N -periodic polynomial of the
form

F̂ (k, z−1) = F (z−1) + H(k, z−1)z−d, (11)

where F (z−1) of degree deg F = d̂ − 1 ≤ d − 1 is
the unique solution of the Diophantine equation

F (z−1)A(z−1) + z−dG(z−1) = 1 (12)

and G(z−1) is of degree deg G = n + d̂ − d ≤ n,
and H(k, z−1) is a N -periodic polynomial.

Proposition 1. The periodic system

F̂ (k, z−1)A(z−1)ûk = F̂ (k, z−1)B(z−1)yk, (13)

where F̂ (k, z−1) of the form (11), is a d-step look
ahead system of the LTI system (1). It is a stable
d-step look ahead system of the LTI system (1) if
and only if F̂ (k, z−1) is stable. 2

Now, we propose the periodic polynomial H(k, z−1)
of F̂ (k, z−1) in (11) in the following form

H(k, z−1) = hik
z−ik , ik = k mod d, (14)

where ik satisfies ik = k − Md, Md ≤ k <

(M + 1)d, ∀M ∈ Z+. It is simple to verify
that the index number ik is d-periodic and takes
integer values between zero and d − 1. Thus
H(k, z−1) is a d-periodic polynomial of degree
d − 1 satisfying H(k, z−1) = H(k + d, z−1). It
follows that F̂ (k, z−1) is a d-periodic polynomial
of degree 2d − 1 and (13) is an (n + 2d − 1)th
order d-periodic d-step look ahead system of the
nth order IIR system (1).

By Proposition 1, it is sufficient to design the d-
periodic polynomial H(k, z−1) of (14) to obtain
a stable F̂ (k, z−1) and, hence, a stable periodic
d-step look ahead system (13). For this purpose,
introduce the following matrices

Φ =











0
... I

0
0 · · · 0 −f

d̂−1
· · · −f2 −f1











∈ Rd×d,(15)

Φ̄ = Φd ∈ Rd×d,

Γ = [0 · · · 0 1]T ∈ Rd×1,

C = [1 0 · · · 0] ∈ R1×d,

Ḡ =
[

Φd−1Γ · · · ΦΓ Γ
]

∈ Rd×d,

H̄ =
[

h0 h1 · · · hd−1

]T
∈ Rd×1.

(16)

It is noted that Ḡ is a full rank matrix. The
problem of designing the stable periodic look
ahead system now is to find H̄, which contains
coefficients of H(k, z−1) such that the polynomial
F (k, z−1) is stable.

Associated with the periodic polynomial F̂ (k, z−1),
there exist a periodic homogeneous system

F̂ (k, z−1)wk = wk + f1wk−1 + · · · + f
d̂−1

w
k−d̂+1

+hik
wk−d−ik

,
(17)

and an LTI homogeneous state equation

w̄k+d = (Φ̄ − ḠH̄C)w̄k, (18)

where wk ∈ R is the output of the homogenous

system (17) and w̄k =
[

wk−d · · · wk−2 wk−1

]T
∈

Rd is the state of the homogenous state equation
(18).

Proposition 2.

(i) (13) is a stable d-step look ahead system if and
only if the LTI homogeneous state equation (18)
is stable, i.e. all the eigenvalues of the matrix (Φ̄−
ḠH̄C) are within the unit circle of the complex
plane;

(ii) The pair (C, Φ̄) is observable for almost all

[f1 f2 · · · f
d̂−1

]T ∈ Rd̂−1 which determines the

matrix Φ̄ = Φd; i.e. the subset of Rd̂−1 containing
[f1 f2 · · · f

d̂−1
]T such that the pair (C, Φ̄) is

unobservable is a measure zero subset. 2



We now consider to assign the eigenvalues of the
matrix (Φ̄ − ḠH̄C) by finding H̄ such that the
periodic look ahead system (13) is stable. Let λi,
i = 1, 2, · · · , d be the d desirable eigenvalues to be
assigned and

ρ(λ) = λd + ρd−1λ
d−1 + · · · + ρ1λ + ρ0

be the characteristic polynomial of degree d in
λ, with coefficients ρi ∈ R, i = 0, 1, · · · , d − 1
and roots λi, i = 1, 2, · · · , d. Using Proposition 2
and Ackermann’s formula (Ackermann, 1972) for
eigenvalue assignment, we present the design of
the stable periodic look ahead system (13) in the
following theorem.

Theorem 1. If the pair (C, Φ̄) is observable and
the eigenvalues of the matrix (Φ̄ − ḠH̄C) are to
be assigned to the roots of the polynomial ρ(λ)
such that the state equation (18) is stable, then
the coefficients of the polynomial Ĥ(k, z−1) in
terms of H̄ for achieving the specified eigenvalue
assignment are given by

H̄ = Ḡ−1ρ(Φ̄)











C

CΦ̄
...

CΦ̄d−1











Γ. (19)

4. CLOSED LOOP SYSTEM STABILITY
WITH PIPELINED PERIODIC CONTROLLER

Consider that

Ap(z
−1)yk = Bp(z

−1)uk (20)

is an npth order discrete time plant with input uk,
output yk and polynomials Ap(z

−1) and Bp(z
−1)

of degree np. Suppose that (1) is a digital feedback
controller applied to the plant (20) such that the
closed loop system is stable. It is assumed that
the closed system has some degree of stability
robustness such that the controller coefficients can
be perturbed within some range without destabi-
lizing the closed loop system.

Consider that fast sampling control of the system
is to be applied and it is required that the con-
troller (1) is pipelined and a stable periodic d-step
ahead system in the form (13) is designed in terms
of periodic polynomials

α̂(k, z−1) = F̂ (k, z−1)A(z−1),

β̂(k, z−1) = F̂ (k, z−1)B(z−1).
(21)

In hardware implementation, the coefficients of
α̂(k, z−1) and β̂(k, z−1) are quantized to meet
the finite word length constraint of the integrated
circuit. Let the quantized periodic polynomials of
α̂(k, z−1) and β̂(k, z−1) be denoted by α̃(k, z−1)

and β̃(k, z−1), respectively. The actual hardware
implementation of the controller is

α̃(k, z−1)uk = β̃(k, z−1)yk, (22)

which, together with the plant model (20), forms
the closed loop control system. It is noted that the
closed loop system (20) and (22) is periodic.

The quantized polynomials α̃(k, z−1) and β̃(k, z−1)
can be factorized as

α̃(k, z−1) = F̃a(k, z−1)Ã(k, z−1),

β̃(k, z−1) = F̃b(k, z−1)B̃(k, z−1),
(23)

where F̃a(k, z−1) and F̃b(k, z−1) are monic d-
periodic polynomials of degree 2d − 1, Ã(k, z−1)
and B̃(k, z−1) are d-periodic polynomials of de-
gree n and Ã(k, z−1) is monic. It is noted that the
multiplication operation between periodic polyno-
mials is, in general, not commutative, i.e.

F̃a(k, z−1)Ã(k, z−1) 6= Ã(k, z−1)F̃a(k, z−1).

In practice, it is reasonable to assume that the
quantization possesses certain degree of accuracy
so the coefficient quantization error is small. By
continuity, the quantized polynomials α̃(k, z−1)

and β̃(k, z−1) approach α̂(k, z−1) and β̂(k, z−1),
respectively, if the coefficient quantization error
is sufficiently small. Moreover, the factorization
in (23) exists such that F̃a(k, z−1) and F̃b(k, z−1)
approach F̂ (k, z−1), Ã(k, z−1) approaches A(z−1)
and B̃(k, z−1) approaches B(z−1), respectively,
if the coefficient quantization error is sufficiently
small.

Introduce the following error polynomials

∆F̂a(k, z−1) = F̃a(k, z−1) − F̂a(k, z−1),

∆F̂b(k, z−1) = F̃b(k, z−1) − F̂b(k, z−1),

∆A(k, z−1) = Ã(k, z−1) − A(z−1),

∆B(k, z−1) = B̃(k, z−1) − B(z−1).

(24)

Using these notations, the quantized controller
(22) can be written as

(F̂ (k, z−1) + ∆F̂a(k, z−1))(A(z−1) + ∆A(k, z−1))uk

= (F̂ (k, z−1) + ∆F̂b(k, z−1))(B(z−1) + ∆B(k, z−1))yk

= (F̂ (k, z−1) + ∆F̂a(k, z−1) + ∆F̂b(k, z−1)

−∆F̂a(k, z−1))(B(z−1) + ∆B(k, z−1))yk.

The above controller can be alternatively written
as

(A(z−1) + ∆A(k, z−1))uk

= (F̂ (k, z−1) + ∆F̂a(k, z−1))−1(F̂ (k, z−1) + ∆F̂a(k, z−1)

+∆F̂b(k, z−1) − ∆F̂a(k, z−1))(B(z−1) + ∆B(k, z−1))yk

= (B(z−1) + ∆B(k, z−1))yk + (F̂ (k, z−1) + ∆F̂a(k, z−1))−1

·(∆F̂b(k, z−1) − ∆F̂a(k, z−1))(B(z−1) + ∆B(k, z−1))yk,

(25)



which, together with the plant (20), forms the
closed loop system.

Theorem 2. Suppose that the closed loop system
(20) and (25) possesses some degree of stabil-
ity robustness against quantization errors in the
controller coefficients and the stable polynomial
F̂ (k, z−1) in the form (11) of the d-step look ahead
controller is also designed to possess some degree
of stability robustness against quantization errors
in its coefficients. Then the closed loop control
system (20) and (25) is stable if the controller
quantization error is small.

Proof: Consider the following model

(A(z−1) + ∆A(k, z−1))uk = (B(z−1) + ∆B(k, z−1))yk,(26)

which is the stabilizing controller model (1) per-
turbed by quantization error polynomials ∆A(k, z−1)
and ∆B(k, z−1). Under the condition that the
closed loop system stability robustness can ac-
count for some controller quantization errors, the
closed loop system resulting from applying the
perturbed controller (26) to the plant (20) is sta-
ble if the quantization error in terms of the error
polynomials ∆A(k, z−1) and ∆B(k, z−1) is small.

Let

ũk = (A(z−1) + ∆A(k, z−1))uk,

ỹk = (B(z−1) + ∆B(k, z−1))yk.
(27)

The stable closed loop system model (20) and (26)
can be alternatively represented by

ỹk = (B(z−1) + ∆B(k, z−1))Bp(z−1)A−1

p (z−1)

·(A(z−1) + ∆A(k, z−1))−1ũk,

ũk = ỹk.

(28)

Using ỹk and ũk as expressed in (27), the closed
loop system (20) and (25) can be represented as

ỹk = (B(z−1) + ∆B(k, z−1))Bp(z−1)A−1

p (z−1)

·(A(z−1) + ∆A(k, z−1))−1ũk,

ũk = ỹk + ∆ũk,

∆ũk = (F̂ (k, z−1) + ∆F̂a(k, z−1))−1

·(∆F̂b(k, z−1) − ∆F̂a(k, z−1))ỹk.

(29)

Since (28) represents a stable closed loop system
model, the close loop system (29) can be viewed
as the stable system (28) subject to a disturbance
∆ũk which is produced by the model perturbation
(F̂ (k, z−1)+∆F̂a(k, z−1))−1(∆F̂b(k, z−1)−∆F̂a(k, z−1))

in the closed loop.

Under the condition that the periodic polynomial
F̂ (k, z−1) possesses some degree of stability ro-
bustness and the coefficients of the quantization
error polynomials ∆F̂a(k, z−1) and ∆F̂b(k, z−1)
are small, the perturbation model (F̂ (k, z−1) +

∆F̂a(k, z−1))−1(∆F̂b(k, z−1)−∆F̂a(k, z−1)) to the closed
loop system (28) is stable and its magnitude is

small. Hence, the stability of the closed loop con-
trol system with the pipelined and quantized con-
troller follows immediately from the well known
small gain theorem (Vidyasagar, 1993). 2

Remark 1. The above result does not require that
the stabilizing digital feedback controller is stable.
So far there exist no methods for the design of
stable look ahead systems for unstable digital sys-
tems and the proposed periodic pipelining scheme
presents a novel approach to pipelining and hard-
ware implementation of digital controllers.

5. CONCLUSION

The pipelined integrated circuit implementation
of digital feedback controllers requires the design
of a stable look ahead system model of the con-
troller. This paper resolves this problem using a
periodic scheme, while there has been no known
LTI solution to such a problem. Analysis is carried
out to show that the proposed periodic pipelining
scheme for fast digital controllers can maintain
closed loop system stability when subject to quan-
tization errors in implementation.
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