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1. INTRODUCTION

System identication deals with the problems of mathe-
matical model building of the dynamic systems based
on observed input/output data from the systems. Based
on the idea originally developed for static regres-
sion analysis (Fedorov 1972; Silvey 1980; Pukelsheim
1993), optimal experimenal design for system iden-
tification such as optimal design of input, sampling
intervals, pre-filters, etc., has been extensively investi-
gated (Mehra 1974, Goodwin and Payne 1977, Zarrop
1979, Forssell and Ljung 2000, and references therein)
to extract the maximum information about the sys-
tem. The most studies on this aspect were for opti-
mal input design for accurate parameter estimation
within a specified model structure or without some
constraints on input or output, assuming the precise
knowledge of the underlying model structure of the
data generating processes. However, in many cases

1 This work is partially supported by the Grant-in-Aid for Scien-
tific Research from the Japan Society of Promotion of Sciences
(C)(2)14550447.

such knowledge is not available and hence the anal-
ysis of the data should be performed in two steps:
identification of an appropriate model structure from
a given class of competing models; and parameter
estimation in the specified model structure. Despite
the universal recognition of the importance of the
first step in system identification, the studies on the
optimal input design for this step is quite few, see
Kabaila (Goodwin and Payne 1977) and Uosakiet al.
(1984, 1987). And it is recognized that, the optimal
experimental design for one of these steps may be
highly inefficient for the other. This leads the necessity
of the compromises in the design, i.e., the tradeoffs
between the performances in these two steps should
be introduced. Recognizing the existence of the con-
flicting optimality criteria, we investigate in this paper
the optimal input design in system identification from
the viewpoint of multi-objective optimization prob-
lem (Keeney and Raiffa 1976, Steuer 1986, Miettinen
1999). The Pareto-optimal set of inputs is derived and
how it is used in system identification is discussed.



2. DS- AND D-OPTIMAL INPUT DESIGN

Consider the following autoregressive model with ex-
ogeneous input (ARX model):

yt = a1yt−1 + · · ·+ anyt−n + but−1 + εt

= aT
nyt−n

t−1 + b1ut−1 + εt (1)

where an = (a1, · · · , an)T , yt−n
t−1 = (yt−1, · · · ,

yt−n)T , εt is independently normally distributed with
zero mean and constant varianceσ2, and inputut is
zero-mean weak stationary. Furthermore, we assume
all the roots of the equation

1− a1z
−1 − · · · − anz−n = 0 (2)

are inside of the unit circle, then the outputyt is also
zero-mean weak stationary. From the practical point
of view, we consider here the variance of the system
output sequenceY = {yt, (t = 1, . . . , N)} cannot
exceed some given value, sayW , i.e.,

W ≥ E[y2
t ] =

1
2

π∫
−π

dFy(ω) (3)

whereFy(ω) is the spectral distribution function of
the output sequenceY . Define the average infor-
mation matrixMθn

for the parameter vectorθn =
(σ2, b, a1, · · · , an)T by

Mθn
= EY |θn
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where{νt} is the residual sequence given by

νt = yt − a1yt−1 − · · · − anyt−n − but−1. (5)

Since

∂νt

∂ak
= −yt−k,

∂νt

∂b
= −ut−1 (6)

we can write the average information matrix as
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=
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E
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t=1
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where

E[ytys] = ρ|t−s|,

rn = (ρ1, ρ2, · · · , ρn)T ,

hk = (ρk − a1ρk−1 − · · · − anρ|k−n|)/b,

(k = 1, . . . , n)

Fn =

 ρ0 · · · ρn−1

...
...

...
ρn−1 · · · ρ0

 , (8)

Hn = (ρ0 − 2
n∑

k=1

akρk +
n∑

j=1

n∑
k=1

ajakρ|j−k| − σ2)/b2

= (ρ0 − 2aT
n rn + aT

nFnan − σ2)/b2.

The information matrix can be partitioned as

Mθn =
1
σ2


2
σ2

0 0

0 Hn GT
n

0 Gn Fn

 (9)

or

Mθn =
1
σ2

[
Mθn−1 Rn

RT
n ρ0

]
(10)

corresponding to the parameter partition(σ2, b,aT
n ) or

(θn−1, an), where

Gn = (h1, · · · , hn)T = rn − Fnan,

Rn = (0, hn, ρn−1, · · · , ρ1)T . (11)

Based on the average information matrix, we can de-
rive the optimal inputs for competing autoregressive
model discrimination and for accurate parameter esti-
mation in autoregressive model (1).



2.1 Optimal input design for model discrimination

Now we consider the problem to find an optimal input
which determines the adequate model structure. Vari-
ous criteria for structure determination have been pro-
posed such as the hypothesis testing approach (Atkin-
son and Cox 1974, Dette 1995) and the information
criterion approach (Akaike 1974). In the hypothesis
testing approach, we will find an optimal input which
determines if the order of the autoregressive model (1)
is n or n− 1 under the output constraint (3). By using
the parameter vectorθn, the order determination prob-
lem can be stated as the testing hypothesis problem
with null hypothesis:

H0 : θn = (θT
n−1, 0)T = θ(0) (12)

against

H1 : θn = (θT
n−1, an)T = θ(1), an 6= 0. (13)

It is known that, under the alternative hypothesisH1,
a random variable

−2 log λ(Y ) = −2 log
supθ(0) p(Y |θ(0))
supθ(1) p(Y |θ(1))

(14)

converges in law to a noncentralχ2 distribution with
degree of freedom 1 and noncentrality parameter

φ = Na2
n(ρ0 −RT

n M−1
θn−1

Rn) (15)

by using the matrix partition (10). Since the power of
the test becomes large for specified significant level
when the noncentrality parameter is large, we will
find the input sequence maximizing theDs-criterion
function (Silvey 1980)

Js = ρ0 −RT
n M−1

θn−1
Rn (16)

subject to the constraint on output variance (3). Since
Mθn−1 is positive definite,RT

n M−1
θn−1

Rn > 0 unless
Rn = 0. Therefore, in order to maximize theDs-
criterion function,ρ0 should be maximized andRn =
0 satisfying the constraint (3). This can be fulfilled
when

ρ0 = W,

ρ1 = ρ2 = · · · = ρn−1 = 0, (17)

ρn = anW.

In this case, the maximum value ofJs is W .

2.2 Optimal input design for parameter estimation

Consider the problem to find an optimal input which
gives an accurate estimate of the parametersθn =
(σ2, b, a1, · · · , an)T = (σ2, b,aT

n )T subject to (3).
Since the Cramer-Rao lower bound for the covariance
of an unbiased estimatêθn is given by the inverse of

the average information matrixMθn , various scalar
measures for the estimation performance based on
Mθn

andM−1
θn

have been considered.

(1) A-optimality: Minimize the trace ofM−1
θn

, i.e.,
minimize the average variance of the parameter
estimate.

(2) E-optimality: Minimize the maximum eigen-
value ofM−1

θn
.

(3) D-optimality: Minimize the determinant or the
generalized variance ofM−1

θn
.

(4) G-optimality: Minimize the maximum of the co-
variance of the outputy(t|θn).

Among these,D-optimality has an advantage of the
invariance property under scale changes of parame-
ters, and it also impliesG-optimality. So, we employ
here

JD = detMθn (18)

as the optimality measure. Using the matrix partition
(9), we can writelog JD as

log JD = log det Mθn

= log 2− (n + 3) log σ2 + log det Fn

+ log(Hn −GT
nF−1

n Gn)− 2 log b

= log 2− (n + 3) log σ2 + log det Fn

+ log(ρ0 − σ2 − rT
n F−1

n rn)− 2 log b (19)

SinceFn is positive definite,rT
n F−1

n rn > 0 unless
rn = 0. This condition also maximizesdet Fn since
detFn achieves its maximum ifFn is diagonal. Sub-
ject to the constraint (3) the maximum value ofdetFn

is achieved withρ0 = W . Summarizing the above,
theD-optimal input should satisfy the following con-
dition:

ρ0 = W,

ρ1 = ρ2 = · · · = ρn−1 = ρn = 0. (20)

By this choice,log det Mθn achieves its maximum
2(W − σ2)Wn/(σ2(n+3)b2).

3. OPTIMAL INPUT DESIGN AS A
MULTI-OBJECTIVE OPTIMIZATION PROBLEM

It is shown in the previous section thatDs-optimal and
D-optimal inputs are similar as(ρ0, ρ1, · · · , ρn−1) =
(W, 0, · · · , n) is common, but the difference is inρn,
which may affect the criterion functions ofD- and
Ds-optimality. After some manipulations,Ds- andD-
optimality criteria can be expressed as functions ofρn

such that

Js = W − b2(ρn − anW )2

(1 + a2
n)W − σ2 − 2anρn

, (21)

JD =
2Wn(W − σ2 − ρ2

n

W
)

σ2(n+3)b2
(22)



with (ρ0, ρ1, · · · , ρn−1) = (W, 0, · · · , 0).
Based on (21) and (22), the criteriaJD and Js are
evaluated as in Fig.1 for the ARX model,

yt = 0.5yt−1 − 0.3yt−2 + ut−1 + εt (23)

whereεt is independently normally distributed with
zero mean and unit variance, and the output variance
E[y2

t ] less thanW = 5. This indicates that the optimal
input for D-optimality criterion (ρn = 0) deteriorates
theDs-optimality criterion, and vice versa.
It is usual as shown above that we cannot find the

(a) Ds-optimality criterionJs

(b) D-optimality criterionJD

Fig. 1.D- andDs-optimality criteria

optimal input that maximizes simultaneously both of
two criteria JD and Js, i.e., two criteria may be
conflicting. We will consider this as so-calledmulti-
objectiveoptimization problem (Keeney and Raiffa
1976, Steuer 1986, Miettinen 1999).

3.1 Multi-objective optimization problem

Multiple, often conflicting objectives are common in
real-world optimization problems. They are, without
loss of generality, all to be maximized (or minimized)
and all equally important, i.e., no additional knowl-
edge about the problem is available. We assume that a
solution to this problem can be described in terms of
a vector ofn decision variables,x = (x1, . . . , n)T in
decision spaceD as follows:

Maximize fk(x), (k = 1, . . . , k∗)

subject tox ∈ D (24)

where the decision spaceD is determined by con-
straints onx such that

g`(x) ≥ 0, (` = 1, . . . , `∗)

hm(x) = 0, (m = 1, . . . ,m∗)

x
(L)
i ≤ xi ≤ x

(U)
i , (i = 1, . . . , n) (25)

For multiple conflicting objectives, each objective cor-
responds to a different optimal solutions, and a set
of optimal solutions can be constructed by making a
trade-offs between these solutions. However, the best
solution in the set is uncertain with respect to all of the
objectives.
In order to deal with this, the concept of dominance
is used for most multi-objective optimization. In the
optimization algorithms, two solutions are considered
on the basis of whether one dominates the other or not.
A solution x is said to dominate the other solution
x′ (x � x′) if both of the following conditions are
satisfied.

(1) x is no worse thanx′ in all objectives, i.e.,
fk(x) ≥ fk(x′) for all k = 1, . . . , k∗

(2) x is strictly better thanx′ in at least one ob-
jective, i.e.,fk(x) > fk(x′) for at least one
k = 1, . . . , k∗

For a given finite set of solutions, we can carry out
all pair-wise comparisons and find which solution
dominates and which solutions are non-dominated
with respect to each other. At the end, we may obtain
a set of solutions such that any two of the solutions
in the set do not dominate each other and that a
solution dominates any solutions outside of the set
can be found in the set. The non-dominated setP∗

of solutions that are not dominated by any member of
the setD is called the Pareto-optimal set.
Figure 2 shows a Pareto-optimal set for the following
two-objective optimization problem:

Maximize f1(x1, x2) = 10000− x2
1 − x2,

f2(x1, x2) = 10000− x1 − x2
2

subject to x1 ∈ [−10, 10], x2 ∈ [−10, 10] (26)

Pareto-optimal solutions (•) lie on the Pareto-optimal
front (Pareto-optimal set), while dominated solutions
are plotted by circles.
There are two principal challenges in Pareto set:

(1) Populating the Pareto set or finding Pareto solu-
tions.

(2) Selecting from among Pareto solutions.

These are analogous to determining potential solutions
and selecting from among the solutions.
Here, a number of the approaches to find the Pareto-
optimal set are given.

(1) Weight sum method: It scalarizes a set of objec-
tives into a single objective by pre-multiplying
each objective with a user applied weight such
that

Maximize F (x) =
k∗∑

k=1

αkfk(x) = αT f (x)
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Fig. 2. Pareto-optimal solutions

subject tox ∈ D (27)

wheref(x) = (f1(x), · · · , fk∗(x))T andα =
(α1, . . . , αk∗)T with αk ∈ (0, 1),

∑k∗

k=1 αk =
1.

(2) ε-constraint method: It keeps one of the objec-
tives and restricts the rest of the objectives within
user-specified valuesεk.

(3) Weighted metric methods: It uses weighted met-
rics such as̀p distance metrics to combine mul-
tiple objectives into a single objective instead of
using a weighted sum of the objectives, where
weighted̀ p distance metric of a solutionx from
the ideal solutionx∗ = (x∗

1, . . . , x
∗
k∗)

T is de-

fined by(
∑k∗

k=1 αk|fk(x)−x∗
k|p)1/p and param-

eterp can take any value between 1 and∞.
(4) Value function method: A mathematical value

function (or utility function)U : Rk∗ → R is
introduced, and the maximum ofU(f(x)) is
searched instead of the maximum off(x).

Among these, the weighted sum method is the sim-
plest. The concept is intuitive and easy. Moreover, it
guarantees finding solutions on the Pareto-optimal set
by the following theorems (Miettinen 1999).

Theorem 1

The solutions to the multi-objective optimization
problem (27) are Pareto-optimal if the weights are
positive for all matrices.

Theorem 2

If x∗ is a Pareto-optimal solution of a convex multi-
objective optimization problem, then there exists a
non-zero positive weight vectorα such thatx∗ is a
solution to the problem (27).

Then, the next problem is to determine which input
in the Pareto-optimal set is preferable. This is done
by using the user’s higher-level information about
the problem such as relative preference factor among
the objectives. In the following, optimal input design

problem will be formulated as a multi-objective opti-
mization problem.

3.2 Pareto-optimal input for model discrimination
and parameter estimation

Since two criteriaJD for model discrimination and
Js for parameter estimation are conflicting as shown
above, we find the Pareto-optimal set of inputs for
the two objectivesJD andJs instead of finding the
optimal input that maximizes simultaneously both of
these two criteria. Applying theorems 1 and 2, Pareto-
optimal set of inputs is obtained by solving

Maximize J = αJD + (1− α)Js, α ∈ (0, 1) (28)

subject to the constraint on output variance (3).
Following the argument in Section 2, the solution is
given by

ρ0 = W,

ρ1 = ρ2 = · · · = ρn−1 = 0,

ρn = anαW, α ∈ (0, 1) (29)

The Pareto-optimal set satisfying (29) for the ARX
model (23) is shown by the heavy line in Fig.3. Since

Fig. 3. Pareto-optimal set

the Pareto-optimal set is convex, the input which dete-
rioratesJD criterion 100γ% from its maximum does
not deterioratesJs criterion 100(1 − γ)% but less
than it, and vice versa. Fig. 4, which shows the de-
terioration rate, how much decrease the criterion from
its maximum value. We can see that the input on the
Pareto-optimal set does not deteriorate bothJs andJD

criteria so much, and hence we can use them as the
input for identification.

Input satisfying condition (29) can be realized as fol-
lows:
It is known that the maximum number of input fre-
quencies required isn(n + 1)/2 or (n + 1)(n + 2)/2
by the theorem of Caratheodory (Fedorov 1972), and
that the existence of the input sequence satisfying
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Fig. 4. Deterioration rate

the above conditions (17) can be realized by Zarrop’s
Chebyshev system approach consisting of(n + 1)/2
or (n + 2)/2 frequencies (Zarrop 1979). Hence, the
optimal input can be chosen in the following form:

ut =
p∑

`=1

m` cos(ω`t + φ`) (30)

whereω` ∈ (0, π), ωk 6= ω` (k 6= `), m` > 0, p =
(n + 1)/2 or (n + 2)/2, and φ` (` = 1, 2, . . . , p)
are independently uniformly distributed on[0, 2π].
Following Ng and Qureshi’s frequency domain design
approach (Ng and Qureshi 1974), the amplitudesm`

and frequenciesω` are satisfying the following system
of nonlinear equations.

ρ0 =
p∑

`=1

m`b
2

f(ω`)
+ C0 = W,

ρk =
p∑

`=1

m`b
2

f(ω`)
cos(kω`) + Ck = 0,

(k = 1, . . . , n− 1) (31)

ρn =
p∑

`=1

m`b
2

f(ω`)
cos(nω`) + Cn = an, αW

where

f(ω) = A(eiω)A(e−iω), (` = 1, 2, . . . , n)

Ck =
σ2

2π

π∫
−π

e−ikω

f(ω)
dω, (k = 1, 2, . . . , n)

C0 ≥ Cj , W − C0 ≥ |Cj |, (j = 1, 2, . . . , n)

A(z−1) = 1− a1z
−1 − · · · − anz−n. (32)

The system of equations can be solved in recursive
manner.

4. CONCLUSION

Since the optimality criteria in input design for sys-
tem identification are sometimes conflicting in model
structure determination and parameter estimation, the
trade-off between these two criteria should be intro-
duced. To deal with this trade-off, multi-objective op-
timization approach is applied to optimal input design.

How to derive the Pareto-optimal set of inputs and
how to use it in system identification are discussed.
This approach will become more important for opti-
mal input design when other criterion corresponding
to the connection between model uncertainty obtained
by system identification and robust controllers (Forsell
and Ljung, 2000) is introduced.
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