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Abstract: This paper addresses the problem of stability analysis for a flexible
cantilever beam which is subject to amplitude limitations in actuator and sensor.
The design of anti-windup schemes is considered in order to enlarge the region
of stability of the closed-loop system. Based on the modelling of the saturated
system as a linear system with dead-zone nested nonlinearities, constructive
stability conditions are formulated in terms of linear matrix inequalities. Some
discussions about possible extensions based on the use of observer loops are
provided. Copyright c© 2005 IFAC.
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1. EXPERIMENTAL SETUP AND
PIEZOELECTRIC MODEL

We consider a flexible cantilever beam, that is
clamped at one end and free at the other as shown
in Figure 1. Two piezoelectric patches are bonded
on this beam. They are placed symmetrically at
the root of the beam. One of them is used as sensor
and the other is used as actuator.
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Fig. 1. Flexible cantilever beam

The equipped structure is linked to an experi-
mental device described in Figure 2, allowing a
controller implementation on a DSP board. Note

that the active reduction of the vibrations of
this smart flexible beam under saturated actu-
ator is under very active research (Halim and
Moheimani, 2001), (Smith et al., 1994), (Halim
and Moheimani, 2002).
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Fig. 2. Experimental setup

The finite-dimensional model is derived from a
Partial Derivative Equation (PDE) modelling,
namely the Euler-Bernoulli equation (see e.g.
(Halim and Moheimani, 2001; Crépeau and Prieur,
2004)). We deduce the finite-dimensional state
equations by modal analysis, as done in (Henrion
et al., 2004), and by restricting ourselves to the



first 12 modal functions only (instead of the infin-
ity modal functions as derived directly from the
PDE). This allows to consider a model in the form:

ẋ = Ax + Bu
y = Cx

(1)

where x is the state of the beam evolving in <24,
y ∈ < is the voltage on the piezoelectric sensor,
u ∈ < is the voltage applied to the piezoelectric
actuator, and A, B, C are matrices of appropriate
dimensions.

1.1 The voltage amplifier model

We use a first-order dynamical model for the
voltage amplifier. Let us denote v the input of the
voltage amplifier and u its output. We have

τ u̇ + u = kv (2)

The output voltage range is ±500 V , whereas
the input voltage range must be ±5 V . The
numerical values of the constants τ and k are
computed from the technical specifications of the
amplifier Model 601C from the Trek Incorporated
used at the laboratory SATIE, CNRS-ENS de
Cachan, France. More precisely τ = 6.51× 10−5 s
and k = 100. But in fact the slew rate of the
amplifier is bounded, that is, the maximal output
voltage rate, denoted speedampli, is equal to 50×
106 V s−1. Moreover, the maximal u̇ computed
with the first order model (2) is kv

τ = 500/τ ,
i.e. 7.7× 106 V s−1 which is less than speedampli.
Thus we do not consider a saturation on u̇ in
our model. Furthermore, we apply a saturation
device before the voltage amplifier to garantee the
factory setting: v ∈ [−5 V, 5 V ].

1.2 The piezoelectric actuator

Let us compute the maximal speed of the piezo-
electric patch. A PZT can reach its nominal dis-
placement in approximately 1/3 of its resonant pe-
riod. The resonant frequency is equal to f0 = N

L ,
where N is its frequency constant and L is the
length of the piezoelectric actuator. For our ex-
perimental device (piezoceramic material PIC 151
from Physik Instrumente) we have N = 1500 and
L = 2×10−2m. Thus the resonant period is equal
to 4.444× 10−6 s. Note that, due to the technical
specifications recalled above, the mimimal period
of the output voltage delivered by the amplifier is
2× 1000

7.7×106 , i.e. 2.6× 10−4 s. As a conclusion, the
speed of the voltage applied to the piezoelectric
actuator cannot saturate, since the limit of the
speed of the voltage getting from the amplifier is
lower than the admissible maximal speed for the
piezoelectric actuator.

We can consider a linear model for the piezo-
electric actuator and sensor as soon as the
voltage which is applied or measured are in
[−500 V, 500 V ]. Therefore, thanks to the sat-
uration map of level 500 present in the voltage
amplifier, a linear model to describe the behavior
of the piezoelectric actuator is sufficient.

The voltage measured through the piezoelectric
sensor is collected in a charge amplifier whose
voltage input saturates at 50 V . We can model
this charge amplifier by a saturation map with a
level at 50 V . Thus, the output signal of the exper-
imental device is obtained through this saturation
map.

2. PROBLEM STATEMENT

From the description above, the system under
consideration is then described by the following
equations:

ẋ = Ax + Bsatu0(u)

u̇ = −1
τ

u +
k

τ
v

y = saty0(Cx)

(3)

with u0 = 500 and y0 = 50.

Let us consider the control law computed by a nu-
merical conditioning of the model of the beam and
by a low order pole-placement controller design
as done in (Henrion et al., 2004). This numerical
algorithm yields to the controller dynamics in <2:

η̇ = Acη + Bcuc

yc = Ccη + Dcuc
(4)

where η ∈ <2 and Ac, Bc, Cc, Dc are matrices
of appropriate dimensions numerically computed
in (Henrion et al., 2004). After the dynamic con-
troller we scale the output of the control by mut-
liplying by 1/100, since we use a high voltage am-
plifier of gain k = 100. Thus, such a controller has
been designed such that the closed-loop system
resulting from the interconnection conditions

v =
yc

100
; uc = Cx (5)

is asymptotically stable.

Some windup problems arise when the saturation
satu0(u) occurs and when the previous linear in-
terconnection is replaced by the real interconnec-
tion:

v = satv0(
yc

100
) ; uc = saty0(Cx) (6)

with v0 = 5.

Hence, from the above description, the complete
experimental system reads:

ẋ = Ax + Bsatu0(u)

u̇ = −1
τ

u +
k

τ
satv0(

Cc

100
η +

Dc

100
saty0(Cx))

η̇ = Acη + Bcsaty0(Cx)

(7)
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Fig. 3. Complete system

and can be depicted in Figure 3.

In the absence of saturation, the stability of sys-
tem (7) is directly characterized by the closed-

loop matrix A =

 A B 0
kDcC

100τ
−1

τ

kCc

100τ
BcC 0 Ac

 which is

Hurwitz by construction. In the presence of satu-
ration, considering that the exact analytical deter-
mination of the basin of attraction of the system
is, in general, not possible, we should be concerned
with the determination of estimates of this basin,
i.e. regions in the state space in which the asymp-
totic stability of system (7) is guaranteed.

The problem we intend to solve can therefore be
summarized as follows.
Problem 1. Given a system where the matrix A
is Hurwitz, determine a region of stability E0 for
system (7) as large as possible.

3. STABILITY ANALYSIS RESULTS

Remark that the system (7) is a nonlinear system
in which the nonlinearities are of nested type.
The stability analysis of this system can there-
fore be carried out from the results proposed in
(Tarbouriech et al., 2004). In the sequel we con-
sider these results in order to provide a solution
to Problem 1.

Note first that system (7) can be re-written in the
following form:

Ẋ = A2X + B2sats2 (A1X + B1sats1(CX)) (8)

where the state X = [x′ u η′]′ ∈ <n+3, A2,
B2, A1, B1 and C are matrices of appropriate
dimensions such that

A2 =

 A 0 0

0
−1
τ

0

0 0 Ac

 , B2 =

 B 0 0

0
k

τ
0

0 0 Bc



A1 =

 0 1 0

0 0
Cc

100
C 0 0

 ,B1 =

 0
Dc

100
0

 , C =
[
C 0 0

]

and the saturation maps are defined with s1 =

y0 ∈ < and s2 =

 u0

v0

y0

 ∈ <3.

Concerning the analysis of the global asymptotic
stability of (8) let us particularize the result of
(Tarbouriech et al., 2004) as follows.
Proposition 1. (Tarbouriech et al., 2004) If
there exist a symmetric positive definite matrix
W and diagonal positive matrices S1 and S2 of
appropriate dimensions satisfying 1 : sym(A2W + B2(A1 + B1C)W ) ? ?

S1B′1B′2 − CW −2S1 ?
S2B′2 − (A1 + B1C)W −B1S1 −2S2

 < 0

(9)
then the closed-loop (7) (or equivalently (8)) is
globally asymptotically stable.

Unfortunately, for the current system LMI (9)
is unfeasible. Hence this sufficient condition does
not apply and thus we infer that the closed-
loop system (7) is not globally asymptotically
stable. In this case, the objective will consist
in determining a region of stability, as large as
possible, in order to estimate the actual basin of
attraction of the closed-loop system. With this
aim, we particularize the result of (Tarbouriech
et al., 2004) to the present system structure.
Proposition 2. (Tarbouriech et al., 2004) If
there exist a symmetric positive definite matrix
W , matrices Z11, Z22 and Y21, and diagonal posi-
tive matrices S1 and S2 of appropriate dimensions
satisfying: sym(A2W + B2(A1 + B1C)W ) ? ?

S1B′1B′2 − Z11 −2S1 ?
S2B′2 − Z22 −Y21 −2S2

 < 0

(10)[
W WC′(i) − Z ′11(i)
? s2

1

]
≥ 0, (11)

1 The symbol ? stands for symmetric blocks. Furthermore,

sym(A) = A + A′.



 W Z ′11 W (C′B′1 +A′1)(i) − Z ′22(i)
? 2S1 S1B

′
1(i) − Y ′

21(i)

? ? s2
2(i)

 ≥ 0

i = 1, 2, 3

(12)

then the set

E(W−1, 1) = {X ∈ <n+3;X ′W−1X ≤ 1}

is a region of stability for system (8) or equiva-
lently (7).

Since the system (3) in closed-loop with (4) is
locally asymptotically stable, the LMIs (10)-(12)
are feasible. Thus an optimization problem with
respect to the “size” of the region of stability can
be considered. For instance, the minimization of
the trace of W−1 can be pursued as follows:

min Trace(MW )
subject to relations (10), (11), (12)[

MW In+3

In+3 W

]
≥ 0

Mw > 0

(13)

Considering the numerical data, one gets ma-
trices W , Z11, Z22, Y21 with the optimal cost:
Trace(MW ) = 1.41 108 which corresponds to a
very small region of stability for the closed-loop
system (the volume of the set E(W−1, 1) is equal
to 2.9 10−11).

4. ANTI-WINDUP STRATEGY RESULTS

In order to provide better solution to Problem 1
and to avoid the undesirable effects of the windup,
or at least to mitigate them, a strategy through
anti-windup scheme can be considered.

The anti-windup techniques consist in taking into
account the effects of saturation in a second stage
after previous design performed disregarding the
actuator limitations. The idea is to introduce some
control modification, active when the saturation
occurs, in order to recover, as much as possible the
properties induced by the previous design carried
out for the unsaturated system. In particular,
anti-windup schemes have been successfully ap-
plied in order to avoid, or at least to minimize the
windup of the integral action in PID controllers,
largely applied in the industry. In this case, most
of the related literature focuses on the perfor-
mance improvement in the sense of avoiding large
and oscillatory transient responses (see, among
others, (Åström and Rundqwist, 1989)). Further-
more, a special attention has been paid to the in-
fluence of the anti-windup schemes in the stability
and the performances of the closed-loop system
(see, for example, (Barbu et al., 2000), (Kothare
and Morari, 1999)). Several results on the anti-
windup problem are concerned with achieving
global stability properties. Since global results

cannot be achieved for open-loop unstable linear
systems in the presence of actuator saturation,
local results have to be considered. It is then
important to note that the basin of attraction is
modified by the anti-windup loop.

Recently, some constructive conditions are pro-
posed both to determine suitable anti-windup
gains and to quantify the region of stability of
linear systems subject to amplitude saturation
actuator (see, among others, (Cao et al., 2002),
(Gomes da Silva Jr. and Tarbouriech, 2003),
the ACC03 Workshop “T-1: Modern Anti-windup
Synthesis” in the ACC04 (Session FrP04 “Anti-
windup”) or the invited session in IFAC NOL-
COS04). In this paper we focus our attention on
a linear system with amplitude nested saturations
on actuator and sensor representing a flexible
cantilever beam. We are then interested in the
design of the suitable anti-windup gains in order
to ensure the closed-loop stability for regions of
admissible initial states as large as possible.

For anti-windup purpose, the set of measured
variables of this system are the following:

v ; yc ; y (14)

Thus, the idea consists in adding the term:

Ec(satv0(
yc

100
)− yc

100
) (15)

in the dynamics of the controller. More complex
anti-windup loops will be discussed in Section 5.

The problem we intend to solve can therefore be
summarized as follows.
Problem 2. Determine the gain Ec, and a region
of stability E0, for the closed-loop system (7) with
the anti-windup term (15), as large as possible.

Considering the controller with an anti-windup
term:

η̇ = Acη + Bcuc + Ec(satv0(
yc

100
)− yc

100
)

yc = Ccη + Dcuc

(16)

leads to the following closed-loop system:

ẋ = Ax + Bsatu0(u)

u̇ = −1
τ

u +
k

τ
satv0(

Cc

100
η +

Dc

100
saty0(Cx))

η̇ = Acη + Bcsaty0(Cx)

+Ec

(
satv0(

Cc

100
η +

Dc

100
saty0(Cx))

− Cc

100
η − Dc

100
saty0(Cx))

)
(17)

We rewrite (17) as

Ẋ = A2X + B̃2sat2 (A1X + B1sat1(CX)) (18)

where X, A2, A1, B1 and C are defined as in
Section 3 and



B̃2 =

 B 0 0

0
k

τ
0

0 0 Bc

 +

 0
0
1

Ec [0 1 0]

The following proposition provides a solution to
Problem 2.
Proposition 3. If there exist a symmetric posi-
tive definite matrix W , matrices Z11, Z22, Z33 and
Y21, and diagonal positive matrices S1 and S2 of
appropriate dimensions satisfying relations (11),
(12) and

sym(A2W + B2(A1 + B1C)W ) ? ?
S1B′1B′2 − Z11 −2S1 ?

S2B′2 − Z22 +

 0
1
0

Z ′33
[
0 0 1

]
−Y21 −2S2

 < 0

(19)
then the set

E(W−1, 1) = {X ∈ <n+3;X ′W−1X ≤ 1}

is a region of stability for the system (18) or
equivalently (17) with the anti-windup gain

Ec = Z33

[
0 1 0

]
S−1

2

 0
1
0


Proof. It suffices to replace B2 by B̃2 in Proposi-
tion 2. In this case, one obtains:

sym(A2W + B2(A1 + B1C)W ) ? ?
S1B′1B′2 − Z11 −2S1 ?

S2B′2 − Z22 + S2

 0
1
0

E′
c [0 0 1] −Y21 −2S2

 < 0

(20)

By considering the change of variable

Z33 = Ec

[
0 1 0

]
S2

 0
1
0

 = EcS22

we rewrite (20) as (19), which is linear in the new
variables. This concludes the proof. 2

The same kind of convex problem as stated in Sec-
tion 3 can be used and tested with the numerical
data to obtain matrices W , Z11, Z22, Y21, Z33, Ec.
By comparing the size of the regions of stability
(issued from Propositions 2 and 3), it follows that
the size of the region of stability obtained by using
the anti-windup strategy is 22% larger than the
one obtained without it.

5. DISCUSSION

5.1 Numerical issues

For numerical limitations, the solutions of the op-
timization Problems like (13) have been computed

after order reduction of the matrices A, B and C
of system (1). This reduction has been done by a
modal truncation i.e. by considering only the first
fourth modal functions. After this reduction, the
order of the system (7) is equal to 11. This re-
duction is lawful since, for flexible structure, with
a small number of smart actuators and sensors,
the first modal functions contains the main part
of the mechanical energy as remarked in (Tliba
and Abou-Kandil, 2003). This reduction has been
also checked on numerical simulations, where the
complete experimental system has been simulated
with 12 modal functions and with the anti-windup
gain computed with only 4 modal functions. The
initial condition has been chosen in the region of
stability issued from Proposition 3 but it is not in
the region of stability determined in Proposition
2 (without anti-windup). Moreover it represents
physically the controlled beam drop test with an
impulsion, i.e. an initial deformation of the beam
with an initial speed. See the output of this system
(i.e. the voltage given by the charge amplifier) on
Figure 4.
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Fig. 4. Simulation of the evolution of the output

5.2 Anti-windup observer-based strategy

In order to take into account the saturation of the
plant input, or equivalently, of the output of the
voltage amplifier, a second anti-windup term can
be considered. However, it should be noticed that
the variable u is not available for measurement.
In this case, an observer of the voltage amplifier
part can be considered as follows:

˙̂u = −1
τ

u +
k

τ
v + Lu(satu0(û)− satu0(u)) (21)

with the error
εu = û− u (22)

From (21) and (22), the anti-windup strategy con-
sists in adding the following term in the dynamics
of the controller:

Fc(satu0(û)− û) (23)



Thus, the closed-loop system in <n+4 reads:

ẋ = Ax + Bsatu0(u)

u̇ = −1
τ

u +
k

τ
satv0(

Cc

100
η +

Dc

100
saty0(Cx))

η̇ = Acη + Bcsaty0(Cx)

+Ec(satv0(
Cc

100
η +

Dc

100
saty0(Cx))− (

Cc

100
η

+
Dc

100
saty0(Cx))

+Fc(satu0(u + εu)− (u + εu))

ε̇u = −1
τ

εu + Lu(satu0(u + εu)− satu0(u))

(24)
In this case, one has to determine the anti-windup
gains Ec and Fc, and the observer gain Lu.

By the same way, if one wants also to use the
charge amplifier, that is, the output saturation
saty0(Cx), since the variable x is not measured,
one cannot use directly the difference saty0(Cx)−
Cx but an estimate of this one. For this, an
observer of the state of the smart system can be
considered as follows:
˙̂x = Ax+Bsatu0(u)+Lx(saty0(Cx̂)− saty0(Cx))

(25)
with the error

εx = x̂− x (26)
As previously, from (25) and (26), the anti-windup
strategy consists in adding the following part in
the dynamics of the controller:

Fc(saty0(Cx̂)− x̂) (27)

In this case, the closed-loop system in <2n+3

reads:
ẋ = Ax + Bsatu0(u)

u̇ = −1
τ

u +
k

τ
satv0(

Cc

100
η +

Dc

100
saty0(Cx))

η̇ = Acη + Bcsaty0(Cx)

+Ec(satv0(
Cc

100
η +

Dc

100
saty0(Cx))− (

Cc

100
η

+
Dc

100
saty0(Cx))

+Fc(saty0(Cx + Cεx)− (Cx + Cεx))
ε̇x = Aεx + Lx(saty0(Cx + Cεx)− saty0(Cx))

(28)
In this case, one has to determine the anti-windup
gains Ec and Fc, and the observer gain Lx.

Note that if we are able to ensure the asymp-
totic stability of (24) or (28), the convergence
of the observers will be ensured, since in both
cases the errors εu or εx will converge towards
the origin. Some preliminary results addressing
this last problem are proposed in (Tarbouriech
and Garcia, 2005). A complete description of the
conditions in the case of (24) or (28) will be
presented in an extended version of the paper.
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