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Abstract: This paper presents modelling of internal combustion (IC) engine with adaptive 
neural networks. A radial basis function network model with both centres and weights 
adapted and a model with only weights adapted are compared with a fixed parameter 
model. The developed models are used in model based predictive control (MPC) to form 
an adaptive nonlinear MPC scheme and applied to engine speed tracking control. The 
modelling and control are based on a generic mean value engine model and consists of 
three submodels that describe the fuel mass flow dynamics, the intake manifold filling 
dynamics and the crankshaft speed. Adaptive MPC is shown superior over the fixed 
parameter model based control.      Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Automotive IC (Internal Combustion) engine control 
is one of the most complex control problems for 
control system engineers and researchers. Due to the 
increasing requirements of governments and 
customers, car manufacturers always try to reduce 
substantially emissions and fuel consumption while 
maintaining the best engine performance. To satisfy 
these requirements, a variety of variables need to be 
controlled, such as engine speed, engine torque, spark 
ignition timing, fuel injection timing, air intake, air-
fuel ratio and so on. These variables are 
complicatedly related to each other. Moreover, car 
engines have several different operating modes 
including start up, idle, running and braking. Engine 
dynamics are severely non-linear and multivariable 
because of these factors. 
 
From an enormous amount of research about the 
modelling and control of automotive engines, it has 
been shown that neural networks not only provide a 
simple model structure, but also capture the inherent 

nonlinearities and the dynamics of automotive 
engines with satisfactory accuracy (De Nicolao, et al., 
1996; Isermann, et al., 2001; Tan, et al., 2000; 
Vinsonneau, et al., 2003;). For highly nonlinear and 
uncertain systems, neural network models with fixed 
parameters are not sufficiently accurate. Instead, 
adaptive neural networks are more appropriate for 
this kind of modelling problems (Chen, et al., 1992). 
In this paper, the dynamic modelling abilities of fixed 
and adaptive neural networks for IC engines are 
tested and analysed. 
 
From the control point of view, MPC, as a recent 
developed practical approach, is a potential control 
strategy for many complex nonlinear systems. In 
order to obtain the best control performance for this 
model-based control strategy, it is essential to choose 
a model as accurate as possible. This paper presents a 
MPC application based on fixed and adaptive neural 
networks. The purposes are to investigate the control 
ability of MPC for IC engines and analyse the 
suitability of these networks for this control strategy. 
 

     



The paper consists of the following. Section 2 
introduces an engine simulation package and the 
corresponding modification. Section 3 discusses three 
neural network modelling methods of car engines, 
using the knowledge derived from Section 2. The 
modelling performance of the different methods in 
uncertain conditions are compared and analysed. 
Section 4 provides a neural network model based 
predictive control strategy for the engine crankshaft 
speed and the control results are discussed. 
Conclusions and remarks are reported in Section 5.   
 

2. THE ENGINE SIMULATION 
 
An engine simulation has been provided by 
Hendricks (2000). It is called a generic mean value 
engine model and consists of three submodels that 
describe the fuel mass flow dynamics, the intake 
manifold filling dynamics and the crankshaft speed. 
The latter two submodels were used in this paper. All 
the variables in this section are defined in the 
notation.  
 
2.1 The intake manifold filling dynamics 
 
The intake manifold filling dynamics is analysed 
from the viewpoint of the air mass conservation 
inside the intake manifold. It includes two nonlinear 
differential equations about the manifold pressure and 
the manifold temperature. 
  
The manifold pressure is mainly a function of the air 
mass flow past throttle plate, the air mass flow into 
the intake port, the EGR (Exhaust Gas Recirculation) 
mass flow, the EGR temperature and the manifold 
temperature. It is described as 
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The manifold temperature can be computed using the 
following differential equation. 
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Here, the EGR mass flow was not considered and 
simply set to be zero. The air mass flow past throttle 
plate is related with the throttle position and the 
manifold pressure. The air mass flow into the intake 
port is a function of the crankshaft speed and the 
manifold pressure. Then the manifold pressure can be 
described by an input-output mapping function. 
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2.2 The crankshaft speed 
 
The crankshaft speed is derived based on the 
conservation of the rotational energy on the 
crankshaft. 
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Both the friction power k  and the pumping power k  
are related with the manifold pressure  and the 
crankshaft speed n . The load power  is a function 
of the crankshaft speed n  only. The indicated 
efficiency 

ip

bP

iη  is a function of the manifold pressure 
, the crankshaft speed n and the air/fuel ratio ip λ . 

The engine port fuel mass flow is described by the 
following equation. 
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Similarly, the crankshaft speed can be derived by 
another input-output mapping function. 
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2.3 Introducing uncertainty for the engine simulation 
 
In order to analyse the performance of different 
adaptive engine models in uncertainty conditions, 
modification is made for the engine simulation to 
introduce the uncertainty of ambient temperature, 
which is uniformly distributed between –35 to +35 
degrees centigrade.  
 

3. NEURAL NETWORK MODELLING 
 
3.1  Data collection 
 
A set of Random Amplitude Signals (RAS) shown in 
Fig. 1 was designed for the throttle position to obtain 
a representative set of input-output data. The range of 
this excitation signal was bounded between 20 and 40 
degrees. The length of each amplitude was set to be 5 
seconds which is 10 times the sampling time of the 
simulation system. Three sets of data samples, 
including the crankshaft speed, the intake manifold 
pressure and temperature, were collected for the 
neural network training and testing. Each set contains 
2000 data samples. 
 

 
 
Fig. 1. RAS of the throttle position 
 
 
3.2 Neural network structure 
 

     



As shown in Fig. 2, the RBF neural network was 
chosen to construct a second-order engine model with 
four inputs and two outputs. 
                                       
 

 
 
Fig. 2. The structure of RBF neural network 
 
The ith output of the neural network model at time t is 
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where )(tjφ is the jth activation function and  is 
the weight. The Gaussian RBF, which has the form of 
the multi-dimensional bell-shaped curve, was used as 
the activation functions. 
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where  is RBF neural network inputs,  is the 
jth centre and 

)(tx )(tc j

jσ  is the corresponding width.  
 
3.3 The three training algorithms 
 
In order to obtain the best modelling performance and 
analyse the modelling ability, three different training 
algorithms were used.  
 
Algorithm 1:  
BLS (Batch Least Squares) + K-means clustering 
 
This algorithm is widely used for off-line training. 
The centres are set by the K-means clustering 
method. The widths are computed by the p-nearest 
neighbours method. The batch least squares method is 
responsible for training the weights W by using 
equation (9).  
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where W  is the matrix of weights,  is the matrix of 
activation function outputs and Y is the matrix of 
training targets. 

Φ

 
Algorithm 2:  
RLS(Recursive Least Squares) + K-means clustering 
 

The recursive least squares method is used for on-line 
training. It helps to construct on-line system models 
which should be more accurate and flexible than the 
off-line models. The equations of this algorithm are 
summarized as follows (Ljung, 1999). 
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)(tλ is set to be 0.985 and the initial conditions are  
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where I is unit matrix and U represents a matrix 
whose components are one. 
 
At each sampling time, the parameters ,  and 

 are updated orderly with the activation function 
)(tL )(ˆ tw

)(tP
)(tϕ . Hence, in this algorithm, only the weights are 

adapted recursively, the centres are fixed after 
running the K-means clustering program for a certain 
set of training data. 
 
Algorithm 3: 
RLS (Recursive Least Squares) + recursive K-means 
clustering 
 
The difference between algorithm 3 and algorithm 2 
lies in the adaptation of the centres. In algorithm 3, 
instead of using the fixed centres, the centres are 
adapted in each sampling period by the recursive K-
means clustering method (Chen, et al., 1992). It helps 
to realise real on-line modelling especially when the 
off-line training data for the K-means clustering is not 
available. To adapt the centres recursively, two 
procedures should be followed. 
 
(i) Compute distances  between the sampled 
input data  and each centre . Find a 
minimum distance and use k to represent its index. 
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(ii) Update the corresponding centre 
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The learning rate is 
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where int[ ] means the integer part of the argument. 
 
3.4 Comparison of the modelling results 
 
The three training algorithms mentioned in section 
3.2 were used for a RBF neural network to model the 
intake manifold pressure and the crankshaft speed of 
the simulation engine. 11 hidden nodes were chosen 
for the second-order RBF model. First 1000 data 
samples (1~1000) were used for training and another 
1000 data samples (1001~2000) were used for testing. 
The three sets of modelling results are plotted in Fig. 
4, 5 and 6. The corresponding MAE (Mean Absolute 
errors) of the modelling outputs are shown in Table 1. 
 

 
 
Fig. 4. Modelling results of algorithm 1 (Displayed 

data: 1600~1800) 
 

 
Fig. 5. Modelling results of algorithm 2 (Displayed 

data: 1600~1800) 
 
For the three training methods, algorithm 1 has the 
biggest modelling error, which is because of its 
limited modelling ability for uncertainty conditions. 
Compared with algorithm 1, the modelling errors of 

algorithms 2 and 3 are significantly reduced, which 
shows that the adaptive neural networks are more 
suitable for modelling uncertain IC engines. 
 
From Fig. 5 and 6, it can be seen that the manifold 
pressure are more difficult for modelling compared 
with the crankshaft speed. This is because it has more 
complex dynamics especially in uncertain operating 
conditions. The different dynamics of the two 
variables determine that the performance of  

 
 
Fig. 6. Modelling results of algorithm 3 (Displayed 

data: 1600~1800) 
 
 

Table 1.  MAE of modelling outputs 
 

Training algorithm      MAE (n)           MAE (Pi) 
 

 
Algorithm 1              0.2571              0.4517 
 
Algorithm 2              0.0605              0.0508 
 
Algorithm 3              0.0594              0.0408 
 

 
algorithm 3 is better than algorithm 2 for the manifold 
pressure, but for the crankshaft speed, there is not a 
significant improvement. It illustrates that algorithm 2 
can work well for the variables with small variations 
and algorithm 3 is more appropriate than algorithm 2 
for modelling the variables with complex dynamics in 
uncertain conditions. 
 

4. MPC FOR THE CRANKSHAFT SPEED 
 
Based on the obtained neural network models in 
Section 3, a predictive control strategy was realised 
for the crankshaft speed control.  
 

     



 
 
Fig. 7. The neural network model-based predictive 

control strategy 
 
As shown in Figure 7, the neural network is used to 
predict the engine output for N2 steps ahead. The 
nonlinear optimiser minimises the errors between the 
set point and the engine output by using the cost 
function,  
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N1 and N2 define the prediction horizon. λ is a 
control weighting factor which penalises excessive 
movement of the control input, the throttle position 
u(t). Nu is the control horizon.   
 
Three engine models obtained in section 3 were used 
in this MPC strategy. The parameters of the nonlinear 
optimisation was chosen as N1=1, N2=4, λ=0.5, 
Nu=0. Three sets of control results and tracking 
errors for different set points are shown in Figure 8, 9 
and 10. 
 

 
 
Fig. 8: Crankshaft speed control result based on 

algorithm 1 (Tracking error: 0.2525) 
 

 
 
Fig. 9: Crankshaft speed control result based on 

algorithm 2 (Tracking error: 0.0447) 
 
From Fig. 8, it can be seen that even the MPC 
controller based on the inaccurate model trained by 
algorithm 1 cannot control the crankshaft speed to be 
desirable values. In Fig. 9 and 10, the control results 
have been improved significantly, which benefits 
from their more accurate engine models. However, 
the improvement of the control result in Fig. 10 is not 
obvious enough compared with the result in Fig. 9, 
although its tracking error is smaller. This is due to 
 

 
 
Fig. 10: Crankshaft speed control result based on 

algorithm 3 (Tracking error: 0.0439) 
 
the strong control ability of the MPC controller 
covers the inaccuracy of the model trained by 
algorithm 2. Nevertheless, further comparison should 
be made by using real engine data which contains 
more complexities and uncertainties. 
 

5. CONCLUSIONS 
 
This paper has compared the IC engine modelling 
ability of RBF neural networks trained by three 
algorithms in uncertain conditions. The control 
performance of MPC controllers based on the three 

     



engine models is also analysed. Some conclusions can 
be obtained as follows. 
 
(1) The adaptive RBF neural networks trained by 
recursive least square method with fixed or recursive 
centres are appropriate for modelling IC engines in 
uncertain operating conditions. 
 
(2) The MPC strategy based on adaptive RBF neural 
network models can achieve good crankshaft speed 
control results. It is a potential control method for 
controlling other engine variables such as the ignition 
angle and the fuel injection angle to improve current 
engine control strategies.  
 
(3) It is needed to do further investigation about the 
modelling ability and the suitability for MPC of 
training algorithm 2 and 3 in more uncertain and 
complex operating conditions.  
 

 
NOTATION OF THE ENGINE SIMULATION 

 
ip       manifold pressure (bar)   
bP       load power (kW)             

uH      fuel lower heating value (kJ/kg)      
k         pumping power (kW)        

atm&      air mass flow past throttle plate (kg/sec) 
k         friction power (kW)          

aT        ambient temperature (degrees Kelvin) 

EGRm&   EGR mass flow (kg/sec)      

apm&     air mass flow into intake port (kg/sec) 
u         throttle position (degrees)       

EGRT   EGR temperature (degrees Kelvin)     
n         crankshaft speed (krpm)        
I         crank shaft load inertia (kg ) 2m

iη        indicated effiency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             

fm&      engine port fuel mass flow (kg/sec) 
λ         air/fuel ratio              

iT        intake manifold temperature (degrees Kelvin) 

dτ∆     injection torque delay time (sec)  

thL       stoichiometeric air/fuel ratio (14.67) 
κ         ratio of the specific heats=1.4 for air 
R        gas constant (here ) 510287 −×

iV        manifold + port passage volume ( ) 3m
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