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Abstract: The Bezout equation over the rings of proper stable rational functions
and matrices is studied in this paper. First, a relationship between the rational
Bezout equation and a combined serial/parallel interconnection of linear systems
is established. The controllability and observability properties that this scheme has
to fulfill in order the Bezout equation to be satisfied yield a numerical procedure
for finding a particular solution of the concerned equation. This routine is usable
for problems of small-to-medium size as demonstrated by numerical experiments.
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1. INTRODUCTION

o

Consider the standard unit feedback loop shown
in figure 1. .+ . +

Let M/N be a stable coprime factorization of the -
plant and Y/X be a stable coprime factorization
of the controller, with M, N,X,Y € S where S
denotes the set (ring) of proper stable rational
functions. The closed loop is internally BIBO
stable? if and only if the four transfer functions

Fig. 1. Closed loop system
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relating the reference and disturbance inputs
to the plant and controller outputs, are stable
(Kucera, 1991) (Kailath, 1980). We can see that
this requirement is satisfied if and only if the term
NX 4+ MY is a unit in S. Hence the controllers
that stabilize the given plant are generated by all
solutions of the equation

NX + MY =1, (2)

known as the Bezout equation or Bezout iden-
tity. The set of all stabilizing controllers can
be further expressed in the following form (the
Youla-Kucera parameterization, (Kucera, 1991)
(Kailath, 1980)):
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where the pair X , Visa particular solution of (2)
and W € S is a free parameter.

This fundamental result remains valid for MIMO
systems as well. However, one must distinguish
between the left and right coprime factorization
of the plant P = NM~' = M~'N, where
N,M,N,M € M(S) are matrices with entries in
S, and the situation gets slightly more involving.
Refer to (Kucera, 1991) (Vidyasagar, 1987) for
details.

A reader interested in further subtleties of the
algebraic approach and the theory of stabilizing
controllers is referred to the textbooks (Kucera,
1991) (Vidyasagar, 1987).

2. BEZOUT EQUATION AND SYSTEMS
INTERCONNECTION

In the sequel the state-space descriptions of the
rational arguments M, N, X,Y involved in the
Bezout identity (2) shall be addressed. Let us
consider the state-space representation of an LTI
system in the form

#(t) = Az(t) + Bu(t), (4)
y(t) = Cx(t) + Du(t).

State matrices A, B,C, D will be marked by the
sub-indices M, N, X,Y to be clear which system
they stand for.

The term G(s) = N(s)X(s) + M(s)Y (s) repre-
sents a combined serial and parallel connection of
four systems N, M, X,Y. State-space matrices of

the overall system G(s) are composed as follows
(see (Kailath, 1980) for instance):

Ax 0 0 0
_IByOx Ay 00
L 0 0 BuCy Ay
- By
| ByDx
Br=|"3 " | (6)
C[Z[DNCX Cn DuCy CM]: (7)
Dr=DnDx + Dy Dy, (8)

In order to solve the Bezout equation (2) we re-
quire this overall system to have the transfer func-
tion G(s) equal to identity: G(s) = N(s)X(s) +
M(s)Y (s) = I. Therefore we must find systems
X(s),Y(s) € S such that the dynamics of G(s) is
hidden. It means that the poles of the connection
are unobservable and/or uncontrollable and the
product of the observability and controllability
matrix must therefore be zero.

Cr
CrA;
O=|ca2 |, C=[Br ABr A3B; -],

CrBr CrArBr
C]A]B] C]A%B[
ocC = CrA?Br CrA3B; - =0.

Such a way we arrive at a set of matrix equations

CrALB; = 0. (9)

The power of the matrix Ay can be rewritten as

An 0 0
n—1 . n—1—i n
s {Ei:o AL BNCOx AY An 0
I 0 0 AL
n—1 . n—1—1
0 0 Zi:o AL By Oy AL

and the product CrA} By reads

C[A?B[ = DNC)(A}BX +
n—1
+Cn Z AéVBNCXAﬁiliiBX +
=0

+ CNAnNBNDX + DMCYAQBY +
n—1

+ Cy Z Aﬁ\/[BMCYAgiliiBy +
i=0

In addition, we require Dy = I:
Dy =DnDx +DyDy =1, (].].)
To proceed further let us consider without loss

of generality that Ax, Ay are formed by a single
Jordan block (one multiple stable eigenvalue X).
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The powers of Ay and Ay in (10) can thus be
written out as

Ay =3 <l> XU, Ay =3 (l> XNTIUi(12)
J J

i=0 =0

where mx = min(dx — 1,1), my = min(dy —
1,1) (here dx,0y stand for the sizes of Ax, Ay
respectively), and U is a square matrix of the
appropriate size with ones above the diagonal,

010 0
0010
U=10 0 0 1

System of equations (10) is nonlinear in unknowns
Bx,Cx, Dx, By, Cy. However, powers of system
matrices Ax, A% ... can be rewritten according
to (12) to obtain a system of linear equations in
unknowns BxCyx, BxUCx, BxU2CX, ... that
can be solved using standard numerical linear
algebra tools. Transfer functions of the resulting
system X can be then composed according to the
following formula

X(s)=Cx(sI — Ax)"'Bx + Dx = (13)
- adj (SI — Ax) _
=Ox det(sI — Ax) Bx +Dx =
SOX T (s = NP 10U By
= 1= D
(s — A% X

The function Y'(s) can be evaluated similarly.

3. ALGORITHM

Particular considerations of the previous section
are summarized below, giving rise to the follow-
ing numerical procedure for finding a particular
solution of the rational Bezout identity.

Algorithm

Input: matrices N,M € M(S) of appropriate
dimensions

Output: matrices X,Y € M(S) such that NX +
MY =1

(1) Transform matrices N, M into state-space
form (compose their realizations).

(2) Choose system matrices Ax, Ay as a single
Jordan block with its eigenvalue in the sta-
bility area.

(3) Solve the system of linear matrix equa-
tions (10), (11) using (12), with the terms
CxBx,CxUByx, CxUQBx, RN CxU‘sX_le,
CyBy,CyUBy, ..., C'yU‘SY_lBy, Dx, Dy
as unknowns.

(4) Compute transfer matrices of X, Y according
to (13)

O

Performance of the proposed algorithm is illus-
trated by two simple examples.

Ezample 1. Let
52 1
M(s) = —,N(s) = —.
(s) GrD (s) TESIE

State-space representation of the systems N (s), M (s)
reads

-1

1 0
av=[3" L] =[1] e =11 00x =0,

-1 1

AM:[O —1

] By = B] ,Cn =[1/2 —1],Dp = 1.

Now the system matrices Ax, Ay are to be cho-
sen. System matrices must be stable, minimum
size, and of the Jordan structure. The choice

Ay = -1, Ay = -1

satisfies these restrictions. From equation (8) we
obtain

D;=DnDx+DyDy =0Dx+1Dy =1 = Dy = 1.
Next the system of equations (10) shall be solved

CrBr =CyBy —2=0= CyBy =2,
CrArBr=-3CyBy +Dx +3=Dx —3=0= Dx =3,
C1A?B;r =CxBx +6CyBy —2Dx —4=0= CxBx = —2.

So we have arrived at the matrix Dx = 3, and
the products CxBx = —2,CyBy = 2. This

information is sufficient to compose the desired
rational functions X (s),Y (s) as

CxBx 3s+1
X = =
(5) s+1 X s+1°
Cy By s+ 3
Y(s)= = .
(5) s+1 v s+1

It is easy to verify that this is a particular solution
to the Bezout identity.

The whole calculation was very simple because
the system matrices Ax, Ay were scalar. Let us
investigate a bit more complicated situation in the
example to follow.

Ezample 2. Solve the Bezout identity NX +

MY =1 with
N(s)= ————, M(s) = —.
(s) (s+1)(s+2) () (s+1)2
Let us consider the state-space realizations of M
and N in the Jordan canonical form for instance
(it is not crucial however),
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Ay = [’Ol _02] ,Bn = “ﬁ] ,Cn =[2 —2],Dy =0,

-1

AM:[O jl],BM:{g],C’M:[I/Z 1], Dy = 1.



The matrices Ax, Ay have to be chosen properly
- in the Jordan canonical form with a single stable
multiple eigenvalue A (we take A = —1):

-1 1
e[ 1]
The equation (11) reads
D;=0Dx +1Dy =1= Dy = 1.

Next the system of linear matrix equations (10)
needs to be solved,

CrBy =CyBy —2=0,
CrA[By =Dx + Cy Ay By — 2Cy By +3 =

0 1
=Dx —3CyBy +Cy [0 0] By +3 =0,

CrA2B; =CxBx —3Dx + Cy A2 By — 20y Ay By +3Cy By — 4 =

0

= COxBx — 3Dx +6Cy By — 4Cy [ 1] By —4=0,

0 1

CrA3Br = ~40xBx + Cx [0 .

]BX +7Dx — 10Cy By +
0 1
+10Cy |4 | By +5=0,

CrAYBr =11CxBx — 50x [0 1] Bx — 15Dx +

0 0

0 1

+ 15Cy By — 20Cy [0 .

]By —6=0.

The results are
CxBX = ]., CxUBX = —2, DX = 3,
CyBy =2, CyUBy = 0.

and the transfer functions X and Y read

(s+1)CxBx + CxUBx

i) = 11 Fhx=
_3S2+78+2
BRCESVER
s> +4s+3
N

3.1 Degree estimation of system matrices Ax, Ay

Concerning the sizes of Ay and Ay (in other
words, the degrees of denominators of X and
Y), they can be deduced from the theory of
stabilization. As indicated in the introductory
section, the solution of rational Bezout identity
(2) relates to a controller stabilizing the LTI
system G(s) = M(s)N~1(s). It is well known
(Kailath, 1980) that in the SISO case there always
exists such a controller of order n—1 where n is the
order of G. Hence dx = 0y = n—11is a reasonable
choice for M and N scalars. For MIMO case, the
recommendation reads dx = 0y = n — rank Cg
where Cg is the state-to-output matrix of the
system G.

Table 1. Results of the numerical test

d R
2 0
3 3.9e15
4 2.4e-13
5 3.7e-14
6 1.5e-13
7 3.3e-10
8  6.3¢-08
9  8.1e-07
10 1.1e-07
11 1.7e-03
12 >1
13 > 1
4. IMPLEMENTATION AND A NUMERICAL
EXPERIMENT

The method was programmed in MATLAB
(Mathworks, 1999b) using the pre-release ver-
sion 3.0 of the Polynomial Toolbox (H. Kwaker-
naak, n.d.). New objects for rational functions and
matrices implemented in the new version of the
Polynomial Toolbox were used.

We will show numerical properties of the pre-
sented algorithm by a simple benchmark exper-
iment. First, random stable systems G(s) of order
d are generated with two inputs and two outputs
by the rss command of the Control Systems Tool-
box (Mathworks, 1999a). These systems are then

factorized as G(s) = NM 1, where N, M € M(S)
are coprime. In Matlab:
(v,M] = def(G);

where dcf is our doubly-coprime factorization
function, interested readers are referred to (J. Lidin-
sky, 2004) for details. Such a way, a pair of coprime
proper and stable rational matrices is obtained as
an input for our procedure. Subsequently, the Be-
zout, identity is solved by the function axby1 that
is the implementation of the algorithm described
in this report:

[X,Y] = axby1(M,N);

The results for orders d = 2,...,13 are presented
in the Table 1.

As a measure of numerical performance the infin-
ity norm R = ||[NX + MY — I||» was evaluated.
The method is well usable for matrices of degree
up to ten.

5. CONCLUSIONS AND DISCUSSION

The Bezout identity over the rings of proper stable
rational functions and matrices has been studied
in this report. Revealed relations between the
Bezout equation and controllability /observability
properties of a related systems interconnection led
to a numerical procedure for finding a particular
solution to the Bezout equation problem.

The proposed algorithm obviously does not fea-
ture superior numerical properties. The procedure



works nicely for medium size problems, however,
higher degrees are not handled properly, as illus-
trated in the Table 1. Similar results can be easily
achieved directly by composing the virtual plant
G(s) = M(s)N~!(s) and computing a stabilizing
controller C(s) in a numerically reliable manner,
see (Varga, 1981) for instance. X and Y then fol-
low from the coprime factorization of C over S (or
M(S), respectively). A numerically reliable state-
space routine for this task has been presented in
(Varga, 1998). The limitations are probably due to
the Jordan structure of the Ay and Ay matrices.
Jordan canonical form is known to be difficult to
handle in the floating point arithmetics for various
reasons, see (G.H. Golub, 1990) (Higham, 1996)
for instance. On the other hand, this choice of
structure is essential to make the main idea of
the algorithm computationally tractable. For this
reason we do not see a simple way how to improve
the numerical properties significantly.

Nevertheless, the proposed method has been
proved to work and appears practically usable for
SISO as well as MIMO problems of reasonable
size. Moreover, some well known results of the ma-
trix theory, theory of stabilizing controllers, and
dynamic systems analysis have been exploited and
put in a new and, hopefully, interesting enough
context in this paper while elaborating the basic
ideas into a workable routine.
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