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1. INTRODUCTION

The state observation problem has been widely studied
since the original works of Kalman (Kalman, 1960)
and Luenberger (Luenberger, 1966). In this respect,
many papers aim at designing reduced-order
observers, which provide an estimate of a linear
functional of the state as in (Murdoch, 1973; Fairman
and Gupta, 1980; Moore and Ledwich, 1975; Hou
et al., 1999; Darouach, 2000; Tsui, 1996)
for linear systems in standard form or in
(Zhang, 1990; Verhaegen and Dooren, 1986)
for systems in descriptor form. The problem of
reconstructing a desired part of the state and the
unknown inputs is of a great interest mainly in control
law synthesis, fault detection and isolation, fault
tolerant control, supervision and so on. Nevertheless,
this problem is still open since in many works,
the authors propose a solution based on a specific
observer and do not focus on the observability
property of the functional of the state to estimate.
Furthermore, in most cases, only sufficient conditions
for the existence of such observers are given, the
systems considered are in standard form and are
not driven by unknown inputs. Among the recent
works, in (Darouach, 2000), necessary and sufficient

conditions are given for the existence and stability of
a functional observer of the same dimension than the
state functional to be estimated. Note also that some
works interest with the design of functional observers
for linear systems in standard form with unknown
inputs. We can cite among the most important works
in this area, the approach developed in(Hautus, 1983)
in the frequency domain. In the latter paper, the
author gave definitions of strong detectability and
strong observability and the conditions for existence
of observers that estimated a functional of the state
and unmeasured inputs. Other works such (Kudva et
al., 1980; Trinh and Ha, 2000; Tsui, 1996) present a
reduced-order linear functional state observer under
some decoupling conditions. After all, each of these
works aims at designing an observer when some
conditions are satisfied, but they do not give any
information about the theoretical reconstructibility of
the functional of the state to be estimated.
Our approach is quite different since on the one
hand we do not interest to a specific observer but
to the theoretical solvability of the problem of
functional observation. On the other hand, our work
concerns linear systems on descriptor form, which
represent a more general class of systems than the



ones in standard form. We interest to such systems
because they result from a convenient and natural
modelling process (Luenberger, 1977; Lewis, 1992).
Moreover, applications of descriptor systems
can be found in various fields (Müller, 2000)
such as robotics, electrical circuit networks,
biologic and economic systems. In this respect,
classical features like solvability, controllability and
observability are revisited for descriptor systems in
(Aplevich, 1991; Cobb, 1984; Dai, 1989; Yip and
Sincovec, 1981; Yamada and Luenberger, 1985; Hou
and Müller, 1999a).
In fact, our work and the geometrical tools we use are
close to the ones employed in (Willems, 1982), which
deals with the solvability of disturbance decoupled
estimation using invariant subspaces. Our main result
consists of necessary and sufficient conditions to
check a kind of right hand side observability (Hou
and Müller, 1999a), called also detectability (Hou
and Müller, 1999b), of any given functional of
the state and unknown inputs. The right-hand side
observability is equivalent to the R-observability
(Dai, 1989; Yip and Sincovec, 1981) or to the finite
observability (Verghese et al., 1981) for regular
descriptor systems. This property of right-hand side
observability or detectability is a very important
observability property for descriptor systems. Indeed,
it is proved in (Hou and Müller, 1999b), that it is a
necessary and sufficient condition for the existence of
a generalized observer which allows to reconstruct the
state. In fact, system (1) is right-hand side observable
iff for t > 0, state x(t) can be uniquely determined
using the knowledge of the output and the input
(Müller and Hou, 1993; Hou and Müller, 1999b).
For a given linear system in descriptor form driven
by both known and unknown inputs, we propose
to answer the question whether or not a desired
functional of the state and the unknown input can
be reconstructed using the knowledge of the known
inputs and the outputs. If it can not, we can affirm that
no observer of any form and any order can estimate
the desired functional of the state and the unknown
inputs. Note that unlike many works, the regularity
assumption (i.e. A, E square and | sE − A |. 0) on
descriptor systems is dropped through this paper.
That means, that we consider the most general case
of descriptor systems i.e. nonregular even non-square
descriptor systems. Note that our results can be linked
easily to these obtained in (Hautus, 1983) for standard
systems but using geometrical tools.

The paper is organised as follows: after section
2, which is devoted to the problem formulation,
necessary and sufficient conditions for the
reconstruction of a functional of the unknown
inputs and the state are given in section 3. These
conditions are illustrated with an example in section
4. Finally, some concluding remarks are made.

2. PROBLEM STATEMENT

Consider the descriptor system:

Eẋ = Ax + Bu + Fv
y = Cx + Dv (1)

where x ∈ Rn, u ∈ Rm, v ∈ Rν and y ∈ Rp are
respectively the state vector, the known input vector,
the unknown input vector and the output vector. E ∈
Rq×n, A ∈ Rq×n, B ∈ Rq×m, F ∈ Rq×ν, C ∈ Rp×n and
D ∈ Rp×ν are constant matrices.
In fact, it is clear that if E is full column rank, then
we can put system (1) in standard form. We assume
only, without loss of generality, that E is full row rank
(rank E = q ≤ n).
Our aim is to check the ability of state reconstruction
or in other terms the reconstructibility of a functional
of the state and the unknown input:

w = Lxx + Lvv (2)

using the knowledge of u, y and its derivatives. w is
reconstructible if and only if we can express it using
the known inputs, the outputs and their derivatives.
In this case, and only in this case, there can exist
a generalized observer which estimates w (Hou and
Müller, 1999b).
In other words, we focus on the conditions which
ensure that a chosen part of both the state and the
unknown inputs is reconstructible using the known
variables. Unknown input vector v may represent any
kind of faults, disturbances, . . . . The knowledge of
them can be beneficial for robust control or fault tol-
erant control objectives. The problem of estimating
unknown inputs is motivated in part by certain appli-
cations where it is either too expensive or perhaps not
possible to measure some of the system’s inputs. Thus,
there have been numerous studies investigating the
problem of input observability and reconstruction par-
ticularly for linear time-invariant systems in standard
form (Hautus, 1983; Hou and Patton, 1998). Note that
lot of works are totally dedicated to inputs estimation
and some of them use state functional observers to
achieve this (Xiong and Saif, 2003).
In this paper, we consider a descriptor system driven
by known as well as unknown and possibly time-
varying inputs. We propose to answer the question
whether or not the problem of the reconstructibility of
a functional of all the unmeasured variables (Lxx+Lvv)
has a solution.
Note that since we assume that matrix E is full row
rank, the system (1) can be transformed into a state-
space of the form:

ẋ1 = A1x1 + A2x2 + Bu + Fv
y = C1x1 + C2x2 + Dv (3)

By regarding (x2, v) as unknown input. Therefore,
the problem we study is equivalent to the functional
observability of L1,xx1 + (L2,xx2 + Lvv). We choose in
the sequel to work with systems in descriptor form (1)
for two main reasons. The first one is that form (3) is
a special case of (1). Secondly, we think that using



geometrical tools, like subspace sequences, there is
no more difficulty to work with a system of the form
(1) instead of a system of the form (3). Indeed, the
main complexity of the problem lies in the fact that
we consider systems with unknown inputs for which
we are interested by observing only a part of the state
and the unknown inputs.

3. MAIN RESULTS

This section is subdivided into two parts. In the first
one, we consider unperturbed descriptor systems (v =

0) for which the presentation is quite simple. In a
second part, using an extended state-space technique,
we generalize the obtained results to the descriptor
systems driven by unknown inputs.

3.1 Observation of a functional of the state for a
system without unknown inputs

For the sake of simplicity, we will first consider a
system without unknown input (v = 0):

Eẋ = Ax + Bu
y = Cx (4)

Recall that the derivative of a functional Hx can be
generically expressed in terms of the state and the
inputs iff Im(HT ) ⊆ Im(ET ). In this case and only
in this case, the derivative of Hx can be exploited
for state reconstruction and then we say that Hx has
a permitted derivative. This important point is not
tackled for linear systems in standard form. Indeed,
E = I implies that Hẋ can be expressed in function
of the state and the inputs for all H: Hẋ = HAx +

HBu. We precise hereafter the notion of permitted
derivatives:

Definition 1. Consider system (4), we say that:
• Γy = ΓCx has generically a permitted derivative iff
Im

(
(ΓC)T ) ⊆ Im (ET ) ;

• Γ



y
ẏ
.
.
.

y(r)

 has a permitted derivative iff ∃ a matrix H

such that Γ



y
ẏ
.
.
.

y(r)

 = Hx with Im (HT ) ⊆ Im (ET ). �

To answer the question if w = Lxx is reconstructible
or not, we define for matrices E, A, C the following
sequence of subspaces :


∆0
E,A,C = Im

(
CT

)

∆i+1
E,A,C = ∆i

E,A,C + AT (EET )−1E
(
∆i

E,A,C ∩ Im
(
ET

) )

(5)
This sequence is a bounded non-decreasing sequence
of subspaces. Thus there exists an integer κ0 such that

∆
κ0+1
Ee,Ae,Ce

= ∆
κ0
Ee,Ae,Ce

which represents the maximal ele-
ment of this sequence. We denote this element ∆∗E,A,C .
The following proposition provides necessary and suf-
ficient conditions for w reconstructibility.

Proposition 2. For system (4), w = Lxx is recon-
structible using the knowledge of input u, measured
variable y and its derivatives iff

Im(LT
x ) ⊆ ∆∗E,A,C

�

Proof:
Necessity: Firstly, we demonstrate property P1:

P1: A functional of the state Hx can be expressed us-
ing the inputs, the outputs and their ith first deriva-

tives i.e. Hx = Γ



y
ẏ
.
.
.

y(i)

+βu only if Im(HT ) ⊆ ∆i
E,A,C .

For i = 0, it is obvious that if Hx = Γy then Im(HT ) ⊆
Im(CT ) = ∆0

E,A,C .
For i = 1, let us assume that there are matrices Γ and
β such that Hx = Γ

(
y
ẏ

)
+ βu. Then, we can find two

matrices Γ0 and Γ1 such that

Hx = Γ
(

y
ẏ

)
+ βu = Γ0y +

d(Γ1y)
dt

+ βu

where from definition 1, Γ1y = Γ1Cx with
Im

(
(Γ1C)T ) ⊆ Im(ET ). The latter inclusion implies

that there exists a matrix K such that Γ1C = KE. So,

d(Γ1y)
dt

=
d(Γ1Cx)

dt
= KEẋ = KAx + KBu (6)

Since E is full row rank, (EET ) is invertible, matrix K
is unique and is given by

K = Γ1CET (EET )−1

Let H1x =
d(Γ1y)

dt + βu, then equation
(6) implies H1 = KA and β = −KB.
Moreover, since Im

(
(Γ1C)T

)
⊆ Im(CT ) = ∆0

E,A,C

and Im
(
(Γ1C)T ) ⊆ Im(ET ), it follows that

Im
(
(Γ1C)T

)
⊆ ∆0

E,A,C ∩ Im(ET ). Consequently,

Im(HT
1 ) = Im

(
AT KT

)
⊆ AT (EET )−1E

(
∆0

E,A,C ∩
Im(ET )

) ⊆ ∆1
E,A,C .

By denoting H0x = Γ0Cx, we have H = H0 + H1
and according to the first step of this proof
(for i = 0), Im(HT

0 ) ⊆ ∆0
E,A,C ⊆ ∆1

E,A,C . Thus,
Im(HT ) = Im(HT

0 + HT
1 ) ⊆ ∆1

E,A,C .

Assume now that property P1 is valid until i = i0, we
prove hereafter that it remains true for i = i0 + 1.

If we can define Γ and β such that Hx = Γ



y
ẏ
.
.
.

y(i0)

y(i0+1)


+βu,

then there must exist two matrices Γ0 and Γ1 such that



Hx = Γ



y
ẏ
.
.
.

y(i0)

y(i0+1)


+ βu = Γ0



y
ẏ
.
.
.

y(i0)

 +
d
dt

Γ1



y
ẏ
.
.
.

y(i0)

 + βu

where from definition 1, Γ1



y
ẏ
.
.
.

y(i0)

 = Γ1Mx with

Im
(
(Γ1M)T ) ⊆ Im(ET ). The latter inclusion implies

that there is a matrix K such that Γ1M = KE. Then,
we can write

d(Γ1Mx)
dt

= KEẋ = KAx + KBu (7)

Since E is full row rank, (EET ) is invertible and so
matrix K is unique and is given by

K = Γ1MET (EET )−1

Let H1x = dΓ1 Mx
dt + β1u, then equation (7) implies that

H1 = KA and β1 = −KB. Moreover, since property P1
is verified until i = i0, we have Im

(
(Γ1M)T ) ⊆ ∆

i0
E,A,C .

Furthermore, as Im
(
(Γ1M)T ) ⊆ Im(ET ),

then Im
(
(Γ1M)T ) ⊆ ∆

i0
E,A,C ∩ Im(ET ). Thus,

Im(HT
1 ) = Im

(
AT KT

)
⊆ AT (EET )−1E

(
∆

i0
E,A,C ∩

Im(ET )
) ⊆ ∆

i0+1
E,A,C .

By denoting H0x = Γ0



y
ẏ
.
.
.

y(i0)

 + β0u, such that

β0 + β1 = β, we have then H = H0 + H1.
Since property P1 is true until i = i0, we have
Im(HT

0 ) ⊆ ∆
i0
E,A,C ⊆ ∆

i0+1
E,A,C . Therefore, we obtain

Im(HT ) = Im(HT
0 + HT

1 ) ⊆ ∆
i0+1
E,A,C . P1 is then proved.

w = Lxx is reconstructible using the knowledge of
inputs u, measured variables y and their derivatives
means that there exist an integer i, matrices Γ and

β such that w = Γ



y
ẏ
.
.
.

y(i)

 + βu. In this case, from P1,

Im(LT
x ) ⊆ ∆i

E,A,C . Consequently, according to the
fact that ∀i ≥ 0, ∆i

E,A,C ⊆ ∆∗E,A,C , it follows that
Im(LT

x ) ⊆ ∆∗E,A,C . We prove then the necessity of
proposition 2.

Sufficiency: Firstly, we demonstrate property P2:

P2: for all i ≥ 0, if Im(HT ) ⊆ ∆i
E,A,C , then we can find

matrices Γ and β such that Hx = Γ



y
ẏ
.
.
.

y(i)

 + βu

For i = 0, it is obvious that if Im(HT ) ⊆ ∆0
E,A,C =

Im(CT ) then there is a matrix Γ such that H = ΓC and
so Hx = Γy.
For i = 1, if Im(HT ) ⊆ ∆1

E,A,C = ∆0
E,A,C +

AT (EET )−1E
(
∆0

E,A,C ∩ Im(ET )
)
, then there exist

matrices H0 and H1 such that H = H0 + H1 with

Im(HT
0 ) ⊆ ∆0

E,A,C and Im(HT
1 ) ⊆ AT (EET )−1E

(
∆0

E,A,C∩
Im(ET )

)
. Since P2 is true for i = 0, there is a matrix

Γ0 such that H0x = Γ0y.
Moreover, ∆0

E,A,C ∩ Im(ET ) represents the permitted
derivable part of ∆0

E,A,C . This implies that there exist
two matrices K and Γ1 with KE = Γ1C such that
H1x = KEET (EET )−1Ax = KAx. According to the
system dynamics (4), we can write H1x = KEẋ−KBu
and so H1x = Γ1Cẋ − KBu = Γ1ẏ + βu. Therefore,
we can find matrices Γ and β such that Hx = Γ

(
y
ẏ

)
+βu.

Assume now that property P2 is valid until i = i0, we
prove hereafter that it remains true for i = i0 + 1.
Indeed, Im(HT ) ⊆ ∆

i0+1
E,A,C implies that there exist

matrices H0 and H1 such that H = H0 + H1 with
Im(HT

0 ) ⊆ ∆
i0
E,A,C and Im(HT

1 ) ⊆ AT (EET )−1E
(
∆

i0
E,A,C∩

Im(ET )
)
. It follows that there are also two matrices K

and Γ1 verifying KE = Γ1M with Im(MT ) = ∆
i0
E,A,C

such that H1x = KEET (EET )−1Ax = KAx.
According to the system dynamics (4), we can write
H1x = KEẋ − KBu and so H1x = Γ1Mẋ − KBu.
Furthermore, since we have supposed that P2 is true

until i = i0, then H1x = Γ′1



ẏ
y(2)

.

.

.
y(i0)

y(i0+1)


+ β1u. Also, we can

find matrices Γ0 and β0 such that H0x = Γ0



y
ẏ
.
.
.

y(i0)

+β0u.

Consequently, there exist matrices Γ and β such that

Hx = H0x + H1x = Γ



y
ẏ
.
.
.

y(i0)

y(i0+1)


+ βu. P2 is then proved.

Assume now that Im(LT
x ) ⊆ ∆∗E,A,C , then according

to the previous results, we can find matrices Γ and β

such that Lxx = Γ



y
ẏ
.
.
.

y(κ0)

 + βu where κ0 is such that

∆
κ0
E,A,C = ∆

κ0+1
E,A,C = ∆∗E,A,C . The sufficiency is then also

proved and the proposition follows. 4

We can do some comments about the previous
result. The first one is that if E equals the identity
matrix, ∆∗E,A,C represents the classical well-known
observability subspace. Secondly, when Lx equals
the identity matrix, we can prove easily that

proposition 2 is equivalent to rank
[

sE − A
C

]
= n

for all s ∈ C, which is the necessary and sufficient
condition to ensure system (4) is right-hand side
observable and consequently that vector x can be
uniquely determined from equations (4) (Hou and
Müller, 1999b). Moreover, when Lx is different from
the identity matrix, our conditions are evidently less
restrictive than the observability of whole the state
vector.



Finally, since we assume that rankE ≤ n, the state x
may not be unique. The conditions of proposition 2
do not discuss about theuniqueness or the solvability
of system (1). Therefore, readers interested by
the solvability of descriptor systems can refer to
(Geerts, 1993).

3.2 Observation of a functional of the state and the
unknown inputs

In this part, we extend previous results to the case
where the system is driven by unknown inputs, which
have to be reconstructed.
In order to generalise previous results, it is useful
to represent descriptor system (1) in the same form
than descriptor system (4). At this aim, let us define
extended state xe =

(
x
v

)
. Using this notation, system

(1) becomes:

Ee ẋe = Aexe + Bu
y = Cexe

(8)

with Ee =
(

E | 0
)
, Ae =

(
A | F

)
, Ce =

(
C | D

)
.

Moreover, functional w = Lxx + Lvv to be recon-
structed can be written w = Lxe xe where Lxe =(

Lx | Lv

)
. According to proposition 2 and equation

(8), we deduce the following proposition.

Proposition 3. For system (1), w is reconstructible
using the knowledge of input u, measured variable y
and its derivatives iff Im(LT

xe
) ⊆ ∆∗Ee,Ae,Ce

. �

Proof:
The proof is an immediate consequence of proposition
2 by replacing matrices E, A, C and Lx by respectively
Ee, Ae, Ce and Lxe .

4. EXAMPLE

In this section, we will illustrate the results presented
above on a simple example. Nevertheless, it is clear
that the proposed method is very well-adapted to
more complex systems.
Consider the linear system in descriptor form defined
by:

E =



1 1 0 0 0 0
1 2 0 0 0 0
0 1 1 −1 0 0
0 0 0 1 0 0
0 0 0 0 1 −1

, A =



0 1 0 0 0 0
0 0 1 0 0 −1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 −1 0

,

F =



0 0
0 0
0 0
1 1
0 −1

, C =

(
1 −1 0 0 0 0
0 1 −2 0 0 0
0 0 0 1 0 0

)
and D = 0.

Suppose that we want to reconstruct
w = (x1, x2, x3, x4, x6, v1 )T .
The extended state vector is equal to xe =

(x1, x2, x3, x4, x5, x6, v1, v2 )T . The matrices
of extended system form (8) are such that:

Ee =



1 1 0 0 0 0 0 0
1 2 0 0 0 0 0 0
0 1 1 −1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 −1 0 0

,

Ae =



0 1 0 0 0 0 0 0
0 0 1 0 0 −1 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 1 1 1
0 0 0 0 −1 0 0 −1



and Ce =

(
1 −1 0 0 0 0 0 0
0 1 −2 0 0 0 0 0
0 0 0 1 0 0 0 0

)
.

Moreover, in the extended state space, the functional
of the state to reconstruct is w = Lxe xe with

Lxe =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


.

We must now compute ∆∗Ee,Ae,Ce
according to the

subspace sequence defined by relations (5) in the
extended state space:
∆0

Ee,Ae,Ce
= Im(CT

e );

∆1
Ee,Ae,Ce

= ∆0
Ee,Ae,Ce

+ span





0
3
−2

0
0
2
0
0


,



0
3
1
−2

0
−7
−2
−2


,



0
0
0
1
0
1
1
1





;

∆2
Ee,Ae,Ce

= ∆1
Ee,Ae,Ce

⇒ ∆∗Ee,Ae,Ce
= ∆1

Ee,Ae,Ce
.

We can also write for convenience ∆∗Ee,Ae,Ce
=

Im



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1


. Thus, we have Im(LT

xe
) * ∆∗Ee,Ae,Ce

.

Consequently, it is not possible to reconstruct
w. Nevertheless, if we want to reconstruct
w′ = L′xe

xe =
(

x1, x2, x3, x4, x6, v1 + v2

)T
, it

is easy to see that Im(L′xe

T ) ⊆ ∆∗Ee,Ae,Ce
. So w′

and all the combinations of its components are
reconstructible.
Comparatively with the most recent works on the
functional state observers, our approach allows us
to answer the question whether or not a desired
linear function of the state and unknown input can be
reconstructed while other works deal with the design
of functional observer when the system verifies
some conditions. It results that, in these works, it is
impossible to conclude about the reconstructibility
because the design conditions are linked to the
proposed observer structure and not to the system
structure.
To illustrate this fact, it appears that it is possible
to reconstruct w′′ = x3 in the previous example.
However, if we refer to (Darouach, 2000), it can be
seen that design conditions of a first order observer
estimating w′′ are not satisfied. That is why, the
design method proposed in this latter work fails. On
other hand, many works dealing with the synthesis
of functional observers fail to design an observer
for the system defined in this example since it is not



completely observable.

5. CONCLUSION

In this paper, we use a subspace sequence to provide
necessary and sufficient conditions to check the total
or partial right-hand side observability of the state and
the unknown inputs for linear systems on descriptor
form. These conditions do not depend on a specific
observer form. Furthermore, contrary to many works
on functional observation, our conditions do not re-
quire the complete observability of the system. Fi-
nally, our approach is mainly an analysis one and it can
be greatly improved by proposing in further works an
observer design method to achieve the estimation of a
desired functional of unmeasured variables.
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