
     

 
 
 
 
 
 
 
 
 

Improved Genetic Algorithm for  Integrated Steelmaking Optimum Charge Plan 
 
 

Yun-Can Xue1,3, Xin Wang2, Shao-Yuan Li3 

 
 

1College of Computer & Information Engineering, Hohai University, Changzhou, China 
2Institute of Information & Control Technology, Center of Electrical & Electronic Technology,  

Shanghai Jiao Tong University, Shanghai, China 
3Institute of Automation, Shanghai Jiao Tong University, Shanghai, China 

 
 
 

 
Abstract: The shortcoming of the standard genetic algorithm is analysed. An improved 
genetic algorithm with modified mutation operator and adaptive probabilities of crossover 
and mutation is proposed. Simulation experiments have been carried and the results show 
that the modifications are very effective. In this paper, an optimum charge plan for 
steelmaking continuous casting production scheduling is also studied.  The charge plan 
model is established. The modified genetic algorithm is used to solve the optimum charge 
plan problem. The computation with practical data shows that the model and the modified 
genetic algorithm are very effective.  Copyright © 2005 IFAC 
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1. INTRODUCTION1 

 
Iron and steel industrial is an essential and sizable 
sector for industrialized economies. Since it is capital 
and energy extensive, companies have been putting 
consistent emphasis on technology advances in the 
production to increase productivity and to save 
energy. The modern integrated process of 
steelmaking continuous casting and hot rolling 
directly connects the steelmaking furnace, the 
continuous caster and the hot rolling mill with hot 
metal flow and makes a synchronized production. 
However, it also brings new changes for production 
planning and scheduling. For steel making process, 
the main work is to arrange the charge plan and cast 
plan.  The basic unit of steelmaking is the charge. To 
make the charge plan, the following conditions are 
needed: 
 

1) steel grades must be the same 
2) steel thicknesses of slabs in the same charge 

must be equal, 
3) the slab width must be the same, 
4) the consignment date must be near. 
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5) the total weight in each furnace must be 

greater than 90% furnace capacity and less 
than the 100%  furnace capacity. 

 
The mathematical models of the optimum charge 
plan are as follows (Tang et al. 1996): 
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Where: 

 P—charge number. 



     

 N--the slab number to be arranged. 
 T—the furnace capacity. 
pj—annexed cost coefficient of residual armor 

plate of the jth charge number. 
 gj--the weight of the jth slab. 
hj—annexed cost coefficient of the jth slab not be 

chosen. 

Yj —The open order of the the jth charge.  
W—weight of the ith slab. 
2
ijC --annexed width cost coefficient of slab i 

combined to slab j and:    
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3
ijC --annexed date cost coefficient of slab i 

combined to slab j and: 
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3. GENETIC ALGORITHM FOR OPTIMUM 
CHARGE MODEL 

 
3.1. Simple Genetic algorithm and its shortcoming 
 
GA is a general methodology for searching a solution 
space in a manner analogous to the natural selection 
procedure in biological evolution (Holland, 1975). 
GA differs from many traditional optimization 
algorithms in that the latter usually suffer from 
myopia for highly complex search spaces (Miller, 
1993 and Salomon 1998). The prominent 
characteristic of GA is that it can test and manipulate 
a set of possible solutions simultaneously, which 
assures GA to find the optimal solution, which 
cannot be found by “hill-climbing” search algorithms 
or “gradient descent” techniques. 
 
Although GA has been successfully used in many 
areas, such as machine learning (Englander, 1985), 
neural network (Eshelman,1991) and TSP 
(Grefenstette,1985), etc., there remain problems 
needed to develop in GA, i. e. premature 
convergence (Schraudolph,1992, Potts,1994, 
Back,1991 and Eshelman,1991). 
 
Prior researchers have made efforts to prevent 
premature convergence including improving 
selection strategy (Syswerda,1989,Davidor, 1989), 
crossover model (Fogarty,1989,Srinivas,1994) and 
probabilities of crossover and mutation 
(Syswerda,1989,Goldberg,1990 and DeJong ,1985). 
 

In the usual version, mutation operator has ability 
to exploit the critical alleles. So researchers seldom 

suspected the ability of the traditional mutational 
operator to prevent premature convergence and they 
have been ignoring to improve the traditional 
mutation operator. As we all know, new 
chromosomes can be generated after crossover, but 
no novel genes can be yielded because the operation 
of crossover is just to exchange parts of genes 
between parents. Selection strategies can bring 
neither new chromosomes nor new genes into 
population. In the stage of selection, GA only selects 
the higher fitness chromosomes from the 
contemporary population to reproduce. So GA 
cannot generate new genes for some loca after 
reproduction. On the contrary, critical alleles in some 
loca will disappear with the death of “bad” 
individuals because of selection. Therefore the 
exploitation of critical alleles depends on the 
mutation operator. The traditional mutation operator 
performs NOT operation. This kind of genetic 
operator, on the one hand, is beneficial to find the 
critical alleles when premature convergence appears, 
but on the other hand, it may hurt the critical alleles 
while mutation acting on the critical alleles. 

 
 

3.2. An improved mutation operator 
 
As we all know, invalid genes occupy some loca 
when GA converges prematurely. To prevent 
premature convergence, it’s important to maintain 
the diversity of genes in the same locus rather than 
the diversity of individuals in the population. Since 
we cannot identify which kind of genes is critical in a 
certain locus, we had better enable the alleles to exist 
in the same locus during the period of mutation. 

 
Here, we present a new mutation operator, which is 
made up of two boolean operators: XORXOR / . The 
expression of the boolean operators is as 
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This differs from the traditional one in that the latter 
is made up of one boolean operator: NOT. Obviously 



     

mutation with new genetic operator needs parents to 
provide two genes. According to (8), the result of 
mutation is that the mutated genes in the same locus 
of two offspring are in the state of compensation. So 
provided that there is a pair of genes mutated in the 
locus, there will be at least one critical allele coming 
into being in the same locus after mutation. The 
probability of the loss of critical alleles caused by the 
improved mutation operator can reduce to zero. As a 
result, the new mutation operator can prevent 
premature convergence to a high degree. 
 
Here is an example that the genes in the 4th and 7th 
locus undergo mutation respectively: 

 

XOR

XOR
operatorOffspringParents

11010101011110

01100110011011

••

••
 

Before mutation, there are two different genes in the 
4th locus and genes in the 7th locus are the same 
while they are mutually exclusive in their own locus 
after mutation. 
 
3.3. Adaptive probabilities of crossover and 

mutation 
 
The significance of crossover probability and 
mutation probability in controlling GA performance 
has long been acknowledged in GA research 
(Srinivas, 1994, 1989, Goldberg, 1990). Several 
studies both empirical and theoretical have been 
devoted to identify optimal parameter settings for 
GAs. The bigger the cp , the quicker the new 
solutions are introduced into the population. As cp  
increases, however, solutions can be disrupted faster 
than selection can exploit them. Typical values of 

cp  are in the ranges 0.5-1.0. Mutation is only a 
secondary operator to restore genetic material. 
Nevertheless the choice mp  is critical to GA 
performance and has been emphasized in DeJong’s 
inceptive work (DeJong, 1985). Large mp  
transforms the GA into a purely random search 
algorithm, while some mutation is required to 
prevent the premature convergence of the GA to 
suboptimal solutions. Typical values of mp  are in 
the range 0.05-0.2. 
 
In order to improve the performance of the GAs in 
optimizing multimodal functions, a lot of works have 
been done (Srinivas, 1994, Goldberg, 1990, DeJong, 
1985). DeJong introduced the ideas of “overlapping 
populations and ‘crowding’ in his work (DeJong, 
1985). Goldberg proposed a Boltmann tournament 
selection scheme for forming and sizing stable sub-
populations (Goldberg, 1990). Srinivas has proposed 
the adaptive probabilities of crossover and mutation 
in Gas (Srinivas, 1994).  

The idea of adaptive operators to improve GA 
performance has been employed earlier (Srinivas, 
1994, Schaffer, 1987). Among them, Sirnivas’s work 

is very effective. In his work, the expressions for cp  
and mp  are given as: 
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where: 
1k , 2k 3k 0.14 ≤k and    ),max(' 21 fff =     (15) 

 
From (11)-(13), it can be seen that the more nearly 
the individual fitness approaches the biggest fitness, 
the smaller the cp and mp . When the individual 
fitness equal to the biggest fitness, the values of 

cp and mp  take zeros. Also in the later evolution 
period, big changes are not suitable to the individual 
near the optimum to prevent the better performance 
of the individuals to be demolished, this will lead to 
no changes are made to the better individual. 
However, the better individual maybe is not the 
global optimum. This will increase the probability of 
the evolution process to stop at the local optimum. 
 
To overcome the above stated problem, based on the 
discussion in section 3.2, here we proposed the 
following adaptive cp  and mp formula: 

)/())(( max211 avgavgcccc ffffpppp −−−−= , 
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1mm pp = ,  avgff <                      (19) 

 

where: 
   2/)( 21 fff +=                               (20) 

 
 In order to test the performance of improved GA 



     

with adaptive probabilities of crossover and mutation 
and modified operator (in brief IGA), the following 
mathematical functions (Srinivas, 1994) are 
introduced to test the IGA:  
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a[2][25]= 

{{-32,-16,0,16,32,-32,-16,0,16,32,-32,-
16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32}, 

{-32,-32,-32,-32,-32,-16,-16,-16,-16,-
16,16,16,16,16,16,32,32,32,32,32,0,0,0,0,0}} 

                                            (22) 
 

[ ]0.1)))((50(sin)()( 1.02
2

2
1

225.02
2

2
13 +++= xxxxf x  

55 ≤≤− x                         (23) 
 

The population sizes in both standard genetic 
algorithm (in brief, SGA) and IGA are 30, and the 
length of encoded strings is 10 for each variable. The 
probability of crossover cp ranges from 0.6-0.9, and 

the probability of mutation mp  ranges from 0.05-0.2. 
 
Simulation results are show in Fig.2. Fig.2 (a),(b),(c) 
represent the search processes of function 1f , 2f , 

3f respectively. Where the dashed lines represent the 
search process of SGA and the solid lines represent 
those of the IGA. From the figures, it can be seen 
that the IGA searches much fast than the SGA.  
 
3.4. Improved genetic algorithm for optimum 

charge plan 
 
Based on the above discussion, the IGA is used to 
solve the optimum charge plan problem. The charge 
model solution has following properties: 

  
(a) Property of the charge model solution 

 
The configuration of the solution is with the 2-
dimensions matrix form. The row represents slab 
number, the column represent charge number. 
 
Only one element in each row is 1, the others are 0. 

 
(b) Construction of the chromosome 
 
Assume ),,,( 21 NaaaX L= , the element index in X 
represents the charge number and the element 
represents the charge number, and },2,1{ LAai L∈  
where Ni ,,2,1 L= . 
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Fig.2 Search process of SGA and ISGA 
 

(c) Fitness function 
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Fig.3  SGA and IGA search process of charge plan 
 

4. APPLICATION EXAMPLE 
 

According to (1), let zCf −= max , this changes the 
minimize problem into the maximum problem and 

maxC is a large constant. 
Now take the practical data in an Iron and steel plant 
as an example. The basic model parameters are listed 



     

in Table 1.There are 15 slabs to be arranged into 4 
charge number.  According to the charge model and 
the improved genetic algorithm, the results are listed 

in Table 2.Fig. 3 shows the response process of SGA 
and IGA. From the figure, it is obvious that the IGA 
response much fast than that of the SGA. 

 
Table 1. Basic model parameters and the computation results 

 
Contract  
number 

Steelgrade 
serial 

Steelgrade Width Consignment 
date 

Weight 

1 13 DT5427A1 1123 4 31.7 
2 12 DT5427A2 1200 5 29.7 
3 14 DT5427A4 950 6 28.7 
4 12 DT5427A2 1178 7 29.5 
5 24 AP1055E4 1150 4 29.7 
6 21 AP1055E1 1135 5 29.5 

    7 23 AP1055E3 1168 6 29.6 
8 21 AP1055E1 1046 7 28.5 
9 11 DT5427A1 1200 5 26.8 
10 12 DT5427A2 1250 6 35.3 
11 14 DT5427A4 1250 7 29.5 
12 12 DT5427A2 950 8 27.5 
13 21 AP1055E1 1213 5 31.5 
14 23 AP1055E3 1046 7 32.5 
15 21 AP1055E1 1300 8 32.1 

T=100      E=100      F1=4     F2=0.1     F3=20     F4=15  P=20  H=100 
 

Table 2. Basic model parameters and the computation results 
 

Contract  
number 

Steelgrade 
serial 

Steelgrade Width Consignment 
date 

Weight Charge  
number 

1 13 DT5427A1 1123 4 31.7 1 
2 12 DT5427A2 1200 5 29.7 1 
3 14 DT5427A4 950 6 28.7 0 
4 12 DT5427A2 1178 7 29.5 1 
5 24 AP1055E4 1150 4 29.7 3 
6 21 AP1055E1 1135 5 29.5 4 

    7 23 AP1055E3 1168 6 29.6 3 
8 21 AP1055E1 1046 7 28.5 4 
9 11 DT5427A1 1200 5 26.8 2 
10 12 DT5427A2 1250 6 35.3 2 
11 14 DT5427A4 1250 7 29.5 2 
12 12 DT5427A2 950 8 27.5 0 
13 21 AP1055E1 1213 5 31.5 3 
14 23 AP1053E3 1046 7 32.5 4 
15 21 AP1055E1 1300 8 32.1 0 

T=100      E=100      F1=4     F2=0.1     F3=20     F4=15  P=20  H=100 
 

 
5. CONCLUSION 

 
Based on the charge production process, a charge 
model is presented by considering the effects of 
steelgrade, slab width and consignment date. This 
model is very practical and is easy to be used. To 
solve the optimum charge plan, an improved genetic 
algorithm with improved mutation operator is 
proposed. Simulation results with practical iron and 
steel plant data show that the model and computation 
method is very useful and effective and can give 
good charge plan.  
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