
 

     

 
 

 
 
 
 
 
 
 
 
 
 
 

A COMMON MODEL FOR XML DESCRIPTIONS IN AUTOMATION 
 
 

Martin Wollschlaeger*, Henry Kulzer**, Daniel Nübling***, Peter Wenzel*** 
 
 

* Industrial Communications, Department of Computer Science, 
TU Dresden, D-01062 Dresden, Germany 

** SIEMENS AG, Systemtechnik SIMATIC, IT Based Automation  
A&D AS RD DHN 3, PO Box 4848, D-90327 Nuremberg, Germany 

*** PROFIBUS International, Haid-und-Neu-Str. 7, D-76131 Karlsruhe, Germany 
 
 
 

 
Abstract: The use of XML as a description language has become state of the art within the 
automation and control domain. Use cases and application scenarios are manifold, re-
sulting in heterogeneous XML document structures. However, a common basic model for 
XML Applications is still lacking. This paper describes requirements and principle struc-
tures for such a common model, which has been developed for use within PROFIBUS 
and PROFINET systems.  Copyright © 2005 IFAC 
 

Keywords: Automation, Description, XML, Internet, Software Tool. 
 
 
 
 

 
1. MOTIVATION 

 
An automation and control system consists of several 
networked components; each with its dedicated func-
tionality and with a specific information set. The 
communication between these networked devices is 
performed via industrial communication systems like 
fieldbuses (IEC 2002) or industrial Ethernet solutions 
(PI 2003). Besides the data exchange at runtime, 
these components provide an information set con-
taining additional data like configuration informa-
tion, maintenance information, documentation and so 
on. Several software tools are used to control and to 
adapt the functionality and the information sets of the 
components, depending on application requirements. 
These requirements are determined by the automa-
tion and control application. Depending on their 
functionality and on their position within the life 
cycle of an automation system, the software tools 
handle the components within different contexts. The 
scenario described above implies extensive, context-
depending exchange and interpretation of data.  
 
The environment for software tools and for compo-
nents is heterogeneous (see Wollschlaeger et al., 
2003). The interfaces for data exchange or interpre-

tation usually are also highly heterogeneous and are 
often of proprietary nature. Some suppliers have 
standardized the interfaces for a data exchange be-
tween their own products or have implemented spe-
cific converters to support systems of other suppliers. 
These ‘point-to-point’ converters are mostly imple-
mented as proprietary solutions, are equipped with a 
binary data format, are not easy to use and form a 
close relation between the current releases of appli-
cations, which may fail after an update of one or both 
releases. Furthermore, there are a lot of export inter-
faces using an ASCII or an ASCII like (e.g. CSV) 
data format.  
 
During the last years, a large number of specific data 
exchange formats have been defined, partly depend-
ing on a model like STEP (ISO 2004) or like the De-
vice Model according to ISO 15745 (ISO 2003, 
FDCML 2002), and partly as private specifications. 
In modern solutions, XML (W3C Consortium, 
2000a) is used as a bidirectional data format. In the 
moment, XML formats are mostly defined without 
coordination to other products, not to mention other 
suppliers. Data are being described by means of 
XML, but their designation and structure, as well as 
their semantics differ substantially. This leads to 



 

     

incompatible data formats, wasting the benefits of 
XML (Fig. I). 

Application Domain 2Application Domain 1

XML
document

XML
document

XML
document

Schema 2 Schema 3

Application 2
Application 3

Schema 4

? ?

Application 1

XML
documentSchema 1

?

 
Fig. I. Current situation in application of XML in the 

automation domain. 
 

2. USE CASES AND REQUIREMENTS 
 
Some of the problems not solved by or even just in-
troduced by XML are missing restrictions for docu-
ment structure, no restrictions for schema structure, 
no common model. Furthermore, XML is a “moving 
target”, requiring to critically evaluate new specifi-
cations, technologies etc. All this leads to inhomoge-
neous documents.  
 
To provide solutions for the problems and limitations 
described above, the most relevant use cases for ap-
plication of XML in automation systems have to be 
elaborated in order to define requirements for using 
XML and to build up a more generic model for 
common use (Wollschlaeger et al., 2004; PI 2004).  
 
2.1 Use Cases  
 
For historical reasons, one of the main use cases is 
Device Description. 
Device Descriptions based on a Schema are well 
suitable for generic tools, code generation, interpre-
tation and transformation. XML files can capture all 
facets of device interfaces and features, including 
nested information without any restriction to nesting. 
Device descriptions are a key technique to integrate 
devices into different automation environments.  
 
A second important use case is Data Exchange. 
This use case can be sub-divided into the following 
ones: 
 Data Migration due to an update of the Applica-

tion Software 
The user wants to re-use data with a newer version of 
application software. Upon an application software 
update, it is very important for the user to have a 
migration facility for his data. Up to now, conversion 
tools and bridge programs had to be designed for 
each application. With a standardized export format 
based on XML, there is no or only a little effort re-
quired, if a few directives are observed. 
 Data Exchange between applications and manu-

facturers 
Today, a proprietary interface is used by applications 
in order to exchange data like project structures or 

device information. The proprietary interface also 
delivers ‘internal’ information of the exporting appli-
cation, which has to be imported and analyzed by the 
other applications. This causes more effort and a very 
close coupling of the applications (like the need to 
update the import functions after a modification of an 
export function inside another application).  
 Context-specific interpretation of Data 

Some applications import data produced by another 
application. The importing application has to be able 
to identify data it can interpret, and has to separate 
this data from unknown information, which has to be 
handled as ‘black box’. 
 Runtime Data Exchange  

Applications and devices can exchange data at run-
time with remote procedure calls (RPC) or web ser-
vices with the benefit of a common interchange for-
mat.  
 
Another use case is a comparison of project data 
A complete export of project information in an easily 
interpretable data format makes it possible to identify 
differences and inconsistencies in various versions of 
the same project. A comparison shall take into ac-
count a specific context, and it shall be possible at 
different levels of project data. 
 
Controlling functionality of applications is also a 
typical use case.  
 Application-specific parameterisation of software 

tools 
The functionality of software tools may be derived 
from XML documents or schemas. An XML file or 
schema can be used to describe user interface com-
ponents, or functionality of applications. These de-
scriptions can be interpreted by the tools at runtime. 
Flexible tools may be created this way, allowing their 
extension or adaptation without re-programming. 
Furthermore, a unique behaviour of a given 
functionality can be achieved. 
 Generic Tool 

Along with strategic comments and annotations 
schemas can be evaluated by a tool to set up intuitive 
user interfaces or tools. Thus a generic and only 
schema driven document editor could be made which 
is able to leave a user in his own (business) world, 
not forcing him down to know about XML schema. 
Without such an editor, owners of different schemas 
probably have to have individual editor tools to gen-
erate instances of their schemas (documents), unless 
these instances will be of machine generated nature. 
 
Finally, administrative information can be described 
in XML. 
Administrative information and Meta data like ver-
sions of documents, author information, and so on 
shall be defined in the same way throughout different 
application domains. 
 
2.2 Requirements 
 
Based on the use cases, some basic requirements 
have been defined (see PI 2004). The most important 
are listed below: 



 

     

 Common, flexible content model 
 Identification of content 
 Avoidance of name conflicts 
 Extensibility 
 Reference mechanism for content and hierarchies 
 References to external content 
 Import/Export of Subsets 
 Export of subsets with ‘open’ references  
 National language support  
 Versioning of schemas, documents and contents 
 Time stamp on various levels: 
 Splitting into multiple files 
 Tool specific content identification 
 Object centric description  
 Data compression for XML documents 
 Know-How Protection, content encryption 

 
The requirements have to be taken into account when 
XML schemas and applications have to be devel-
oped.  
 
PROFIBUS (IEC 2002) and PROFINET (PI 2003) 
are widely used industrial communication systems. 
For applications in such environments, the guideline 
XML@PROFIBUS (PI 2004) has been developed 
containing a common model, which shall be used for 
schema definitions and XML document structuring. 
Furthermore, rules for namespaces and versioning 
have been defined, a workflow is described and a 
supporting infrastructure has been set up. Based on 
this guideline, building blocks of re-usable schema 
definitions and instance files have been defined, 
which will be extended on demand. As a result of 
this process, the relations between XML instance 
files and schemas change, as it is displayed in Fig. II. 

Application Domain 2Application Domain 1

Common definitions
and semantics

XML
document

XML
document

Domain
specific

schema 1
Domain 
specific

schema 2

Application 1

Application 3

Basic Schema („Primitives“)

inheritance inheritance

uses uses

uses

Application 2

 
Fig. II. Intended use of XML based on common 

definitions. 
 

3. COMMON MODEL 
 
The common model is based on an object structure 
(Fig. III). An object is used as an abstract construct, 
where application-specific objects can be derived 
from. As a required attribute, it contains an ID. It 
may be further characterized by a type name. A read-
able name may be assigned to the object. An object 
may have a version, describing the version of content 
the object contains. Objects can be organized hierar-
chically, depending on application requirements. 
Thus, an object contains all information necessary 

for uniform identification, a major prerequisite for a 
common model. 

+ID
+Type
+Version
+Name

Object

+Name
Feature

*

hasFeature

+Name
+Value

Parameter

0..1

*

hasConnector

+Name
Connectionfrom

to

0..1

*

hasSubObject

0..1

*

hasConnection

+Name
Connector

0..1

*

hasParameter

*

referencesObject

0..1

+ID
+Type
+Version
+Name

Object

+Name
Feature

*

hasFeature

+Name
+Value

Parameter

0..1

*

hasConnector

+Name
Connectionfrom

to

0..1

*

hasSubObject

0..1

*

hasConnection

+Name
Connector

0..1

*

hasParameter

*

referencesObject

0..1

 
Fig. III. The object as the basic construct of a com-

mon model. 
Besides the general object identifier, application spe-
cific identifiers are supported as well, because appli-
cations usually require a relation between their spe-
cific objects and their exported objects. By this 
method software tools within a tool chain may apply 
their own namespaces, naming conventions and their 
specific identification rules without conflicting with 
each other. In addition, a tool may add specific in-
formation, and may retrieve this information later on; 
regardless of the other tools of in a chain.  
 
Since an object contains further details in its content, 
a structure has to be developed for organizing the 
content. Instead of simply adding content elements as 
tags underneath the base object tag, a more generic 
structure has been defined. The content is mapped to 
named parameters. The parameters are grouped by 
features. Such a named feature shall reflect a specific 
logical group of parameters. As a rule of thumb, 
features should be disjunctive to each other, meaning 
that they should contain context-depending parame-
ters without an overlapping. For example, any dis-
play-related information of an object should go into 
one feature, while any access-related information 
should go to another one. The benefit is obvious – 
further features can be added flexibly, without re-
designing the object.  
 
Features can reference other objects. Basic reference 
mechanisms have been defined, applicable for local 
references, for relative references and for references 
to objects or features in external files. Object identi-
fication as described above is used for specifying the 
target. Well-known, widely accepted standards like 
XPath (see W3C Consortium 1999) are used. Thus, 
an intrinsic, flexible referencing methodology is de-
fined, which is a prerequisite for a flexible distribu-
tion of objects and features to multiple files. 
 
For several reasons, it may be necessary to encrypt 
the content of an object. An insertion point for stan-



 

     

dard technologies within the XML domain is embed-
ded in the object. 
 
If, besides a logical association, a relation between 
objects has specific parameters, it can be explicitly 
modelled using connectors and connections. Within 
the base object, abstract connectors and connections 
have been defined, where specific ones shall be de-
rived from. 
 
While the object is a basic construct for modelling 
data, a document is the basic element for any XML 
instance file. The basic document type contains Meta 
information describing user, tool, and timestamp of 
creation or modification. Furthermore, attributes 
necessary for referencing satellite files (distribution 
of objects, or language-depending definitions). 
Finally, a document may be entirely encrypted (see 
W3C Consortium 2001b). An adequate insertion 
point for a signature is embedded. 
 
The document contains objects defined using the 
object model described above. Whether a derived 
object is allowed to be inserted into a document or 
not is controlled by the substitution group mecha-
nism. When specifying objects, an adequate defini-
tion of substitution groups can be used to control the 
structure of the document tree. Although – compared 
to the usual approach of modelling tag hierarchies 
directly – this method requires an extra effort in the 
design phase of a schema, but it provides an out-
standing flexibility which is essential in many use 
cases. 
 
XML documents have an implicit hierarchy, re-
flected by the tag structure. However, it is often re-
quired to interpret the data in a way, where the im-
plicit hierarchy cannot be used. Therefore it is possi-
ble to model hierarchies in an explicit way, depend-
ing on the context. This way more than one hierarchy 
can be integrated into the same document, without 
having to change its internal structure. These explicit 
hierarchies are described using the reference methods 
described above.  
 
Another prerequisite mentioned above is support for 
multiple languages. This is provided by using lan-
guage-depending parameters, which have a standard 
“xml:lang” attribute to indicate the language. Since 
it’s frequently desired to separate language-depend-
ing text (e.g. labels) form the main document, a uni-
form way of distributing text to satellite files or to 
one specific tag within the main document has been 
defined. 
 

4. SCHEMAS AND NAMESPACES 
 
The detailed, application-specific definition of XML 
documents shall be done using XML schema rules 
according to (W3C Consortium 2001a). However, 
the common model described above shall be consid-
ered. In order to do this, a basic schema (“Primi-
tives”) has been defined containing the elements of 
the model, and some additional building blocks. This 

schema shall be referred to within own schema defi-
nitions.  
 
The reference to the Primitives is done by means of 
standard XML and schema mechanisms. This allows 
either including, importing or redefining of the 
Primitives. An adequate namespace prefix has to be 
used in the respective statement.  
 
In order to support the idea of a common model, the 
specific schemas have to fulfil some requirements. 
First of all, entities defined by a schema shall be de-
scribed as an object derived from the object in the 
Primitives. This is no restriction to generality, but a 
prerequisite for seamlessly applying common identi-
fication methods, references, multiple languages etc. 
At second, the content of a schema shall follow a 
structure as shown in Fig. IV. It shall be considered, 
if there are adequate definitions already existing 
which can be re-used. If not, an entity shall be 
defined keeping in mind its ability to be re-used. It is 
desired practice to define domain-specific schemas, 
which contain all entities relevant for an application 
domain, while an application-specific schema shall 
only contain entities specific for the application. In a 
domain-specific schema, the objects of the Primitives 
are refined to automation specific objects. For exam-
ple, shared data types may be defined, which can be 
used by various tools and build a common base. Al-
though the assignment described above should be 
done during initial schema development, schema 
evolution with versioning and namespaces allows 
future adjustments. 

XML@PROFIBUS

Primitive Schema

Domain Specific Schema

Application Specific Schema

sp
ec

ifi
c

fo
ra

n 
ap

pl
ic

at
io

n
do

m
ai

n
co

m
m

on

Derivation possible by applications and 
further development=

W3C Schema

 
Fig. IV. Architectural overview of schema 

dependencies. 
 
By qualifying the namespaces, instance documents 
may comprise of elements defined in each of the 
underlying schemas. For namespace names, some 
basic rules have been defined. As usual, the name-
space name is a string corresponding to a URI. This 
is done for two main reasons – responsibility and 
support.  
 
Since a URI contains a web address of an organiza-
tion, only this organization can bear responsibility for 



 

     

the URI and for the namespace. It is also a task of 
that organization to specify further details of the 
namespaces in a consistent way. The preferred 
method is a general subject followed by year and 
month and by application areas (perhaps with further 
qualifying sub-elements).  
 
The support aspect is fulfilled by having the name-
space URI pointing to a HTML page containing at 
least a short description of the schema, a link to 
download the schema file, a link to the schema 
documentation and an exemplary instance file. Thus, 
any developer of schema files can gain optimal sup-
port for his work. Fig. V shows a screenshot of such 
a HTML page available at PROFIBUS International. 

 
Fig. V. Screenshot of a support page. 
 

5. EXTENSIBILITY 
 
The systems within the automation domain are rather 
complex. Furthermore, they are often used as em-
bedded or underlying structures of huge systems, like 
for example enterprise control systems. Considering 
the different phases of the life cycle of automation 
systems, additional views to a system as a whole and 
to its components are introduced.  
 
An application of XML in this context requires 
structures and methods for an easy adaptation to the 
required targets. This can be achieved in several 
ways. The most suitable one is the combination of 
elements from different namespaces within a 
schema. By qualifying the namespaces according to 
standard XML rules (as mentioned above) specific 
schemas can be created. However, this requires a 
kind of “early binding”, similar to software devel-
opment.  
 
This is not always possible, since there are situations, 
where the combination of elements from different 

semantic definitions (different namespaces) depends 
on applications or context. Such a “late binding” can 
be done by inserting specific placeholders in a 
schema. The schema construct xsd:anyType is a 
typical example of a placeholder. In the context of 
the model, it can be used to specify extensibility of 
objects, features, or parameters. Using the very same 
method, schemas based on the concepts from the 
common model may be integrated into existing defi-
nitions. There is no restriction concerning the organ-
izational layer of such an existing definition within 
the automation hierarchy. For example, device mod-
els according to (ISO 2003) may be source or target 
of extension, or definitions from the enterprise level 
like (ISA 2001) or (ISA 1995).  
 
The methods described above allow extensibility at a 
schema level. However, extensibility can also be 
supported at an instance level. This means, that defi-
nitions are made in XML files rather than in sche-
mas. A typical example is a mapping of codes to 
(perhaps language-depending) textual information. 
When such a coding is modelled as an object ac-
cording to the Primitives, the instance file finally 
contains a number of instances of that particular ob-
ject type. By using reference mechanisms as de-
scribed above, these instances can be referenced to. 
Using the XPath addressing schema, fixed or open, 
strong typed or loosely defined, 1:1 or 1:n references 
can be modelled. This allows the required flexibility 
of descriptions. Furthermore, typed references can be 
used. They can be evaluated by a tool or even a style 
sheet, which are able to consider context information 
for interpreting (selecting and resolving) references. 
When XLink technology (W3C Consortium 2000b) 
is widely supported at a generic level, the model may 
be extended to allow XLink constructs in parallel to 
XPath or direct references. 

Object #3

Feature b

XML Document

external
Document

Tool 1 Tool 2 Tool 3

Object #1

Object #2

Feature b

Feature a

Feature a

Object #3

Feature b

XML Document

external
Document

Tool 1 Tool 2 Tool 3

Object #1

Object #2

Feature b

Feature a

Feature a

 
Fig. VI. A tool chain using distributed content. 
 
Together with the application-specific identification 
of an object, complex tool chains may be realised, 
operating on the very same, perhaps distributed, 
description content. Each of the tools may access 
selected parts of the content, either complete objects 
or just features, may enrich it with specific informa-
tion, and provide it for other tools of the chain. A 



 

     

principle of such a tool chain is shown in Fig. VI. 
The possibly distributed character of the description 
content can be recognized, the common model’s 
built-in mechanisms are used to provide consistency. 
 

6. BUILDING BLOCKS 
 
The extensibility concepts are widely used to create 
building blocks of re-usable information. Although a 
specification of information fragments and snippets 
is also possible with the existing XML technologies, 
its re-use is still problematic. This is especially 
caused by different modelling concepts used, which 
prevent a unique way of identification and reference. 
Furthermore, the typically closed description models 
lack the flexibility required. This has completely 
changed with the common model described above. 
 
Consequently, all XML-based definitions within 
PROFIBUS and PROFINET environment will be set 
up using the common model. Using the extensibility 
concepts, integration into existing solutions can be 
done. Thus, a migration path from existing specific, 
closed solutions to those following the approach de-
scribed above can be opened. 
 
The goal is to provide a common set of such building 
blocks useful throughout the whole PROFIBUS and 
PROFINET environment, but not limited to. The set 
will consist of a combination of schemas and of in-
stance files. 
 

7. CONCLUSIONS 
 
The use of XML descriptions in the automation do-
main has become state of the art. Because of the va-
riety of applications, there’s no best practice pattern 
on how to model content with XML. Clearly based 
on the use cases, different concepts have evolved, 
each of them designed with a specific context and 
viewpoint in mind. 
 
As a result, there’s no common relation between the 
different models, nor is a way for creating automatic 
tools for translation or data exchange. Thus, double 
definitions, double efforts in design, complex trans-
lation methods etc. reduce the benefits expected 
when introducing XML into the automation domain. 
 
Taking the typical use cases for the automation do-
main into account, a common model for handling 
XML was developed for applications in PROFIBUS 
and PROFINET systems, but not limited to. As de-
scribed above, it provides basic definitions and rules 
for modelling content. Its outstanding flexibility and 
extensibility allows an easy integration into existing 
approaches, and an easy creation of re-usable defini-
tions as building blocks. Since there is no generic 
model for handling XML in the automation and con-
trol domain, it could be useful to discuss these con-
cepts in other activities applying XML.  
 
Besides its generic character, the model is open for 
further developments. When new technologies come 

into a mature and accepted stage, they will be inte-
grated. Besides the already mentioned XLink, current 
developments from the Semantic Web area are 
promising candidates.  
 
Finally, the model is currently being introduced into 
specification groups and standardization bodies in 
order to achieve a broad acceptance. 
 

REFERENCES 
 
FDCML (2002) Field Device Configuration Markup 

Language. FDCML 2.0 Specification, Version 
1.0, http://www.fdcml.org. 

IEC (2002) IEC 61158 – Digital data communication 
for measurement and control – Fieldbus for use 
in industrial control systems. 

ISA (1995) ANSI/ISA-88.01-1995 - Batch Control 
Part 1: Models and Terminology. 

ISA (2001) ANSI/ISA-95.00.02-2001 - Enterprise-
Control System Integration Part 2: Object Model 
Attributes.  

ISO (2003) ISO 15745-3 Industrial automation sys-
tems and integration -- Open systems application 
integration framework -- Part 3: Reference 
description for IEC 61158-based control sys-
tems. 

ISO (2004) ISO 10303 Industrial automation systems 
and integration - Product data representation 
and exchange. 

PI (2003). PROFInet - Architecture Description and 
Specification. PROFIBUS International, No. 
2.202. 

PI (2004). XML@PROFIBUS. PROFIBUS Interna-
tional, Guideline, No. 2.342. 

W3C Consortium (1999). XML Path Language 
(XPath), Version 1.0, 16-Nov-1999, 
http://www.w3.org/TR/xpath/ 

W3C Consortium (2000a). Extensible Markup Lan-
guage (XML) 1.0 06-Oct-2000, 
http://www.w3.org/TR/2000/REC-xml-
20001006 

W3C Consortium (2000b). XML Linking Language 
(XLink) Version 1.0 20-Dec-2000. 
http://www.w3.org/TR/2000/PR-xlink-
20001220/ 

W3C Consortium (2001a). XML Schema Part 1: 
Structures, W3C Recommendation, 2-May-2001, 
http://www.w3.org/TR/xmlschema-1/ 

W3C Consortium (2001b). XML-Signature Syntax 
and Processing, W3C Proposed Recommenda-
tion, 20-Aug-2001, http://www.w3.org/TR/2001 
/PR-xmldsig-core-20010820/ 

Wollschlaeger, M., F. Geyer, D. Krumsiek, and R. 
Wilzeck (2003). XML-based Description Model 
of a Web Portal for Maintenance of Machines 
and Systems. 9th IEEE International Conference 
on Emerging Technologies and Factory Auto-
mation ETFA2003, Vol.1, pp. 333-340. 

Wollschlaeger, M., M. Thron, and R. Simon (2004). 
XML in Control Systems. IEE Open Control 
Systems – The Importance of Industrial Stan-
dards, Birmingham (UK).  

 




