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Abstract: In this paper, a classifier is proposed and trained to distinguish between
bulking and non-bulking situations in an activated sludge wastewater treatment
plant, based on available image analysis information and with the goal of predicting
and monitoring filamentous bulking. After selecting appropriate activated sludge
parameters (filament length, floc fractal dimension and floc roundness), an LS-
SVM approach is used to train a classification function. This classification function
is shown to have a satisfactory performance after validation. Copyright c©2005
IFAC.
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1. INTRODUCTION

One of the most often encountered problems when
operating activated sludge wastewater treatment
plants is filamentous bulking. Caused by the abun-
dance of filamentous microorganisms, it precludes
the proper aggregation and sedimentation of the
biomass. This phenomenon has a negative influ-
ence on the performance of the wastewater treat-
ment plant, in the worst case resulting in the
escape of biomass into the environment. Even
though filamentous bulking has been identified as
a problem for a long time, it continues to ham-
per activated sludge wastewater treatment plants
(Wanner, 1994).

To monitor the settleability of the activated
sludge, Sludge Volume Index (SVI) 1 measure-

1 The Sludge Volume Index is the volume in mL/g occu-
pied by the activated sludge after 30 minutes of sedimen-
tation. Bulking is said to occur when the SVI exceeds 150
mL/g.

ments are often performed. These measurements
provide only macroscopic settling characteristics
of the studied sludge. If more details on the com-
position of the sludge are desired, microscopic
observation is required. Unfortunately, these mi-
croscopic observations are both time consuming
and very subjective, varying greatly with the level
of expertise of the analyst. As a result, little to
no time for remedial actions is left once sedi-
mentation problems are observed. Therefore, an
automated procedure for the quick and objective
analysis of activated sludge properties would be a
major accomplishment in the battle against fila-
mentous bulking.

Recent research has resulted in a well-performing
image analysis algorithm (Jenné et al., 2003, 2004)
for the analysis of activated sludge properties. The
goal of this work is to exploit the data obtained
by this algorithm in predicting whether or not the
studied sludge faces settling problems, thus acting



Fig. 1. SVI (- -) and COD loading (—) profiles during the four conducted experiments.

as a time saving and objective substitute for the
classic SVI measurement.

2. MATERIALS AND METHODS

2.1 Experimental setup

A lab-scale activated sludge system was used to
gather experimental data. The installation con-
sists of an aeration tank with a capacity of 5 L,
followed by a sedimentation tank with a volume of
3 L. From this sedimentation tank, the sludge is
either recirculated to the aeration tank, or wasted.
The sludge used in the experiments was obtained
from the domestic wastewater treatment plant at
Huldenberg (Belgium). A synthetic influent was
fed to the lab-scale installation, with acetate act-
ing as a carbon source in the first experiment
and using glucose as substrate in the subsequent
experiments.

To induce bulking, the Chemical Oxygen Demand
(COD) loading was abruptly switched between a
low (250 mg/L) and a high value (1000 or 2000
mg/L), except in the first experiment, where the
COD loading was increased in smaller steps (from
200 to 1000 mg/L, passing through 350 and 700
mg/L). The exact COD loading profiles are given
in Figure 1.

Daily measurements were performed on this sys-
tem, such as the Sludge Volume Index (SVI) and
Mixed Liquor Suspended Solids (MLSS), together
with the Suspended Solids (SS) and COD of the
effluent. In parallel, microscopic observations were
performed to determine the sludge composition by
means of image analysis. The observed SVI-profile
is depicted in Figure 1.

2.2 Image acquisition equipment

Activated sludge images are acquired using an
Olympus BX51 light microscope with a 10×10
magnification and equipped with a 3CCD color
camera (Sony DXC-950P). The sample is subject
to a phase contrast lighting in order to enhance
the contrast between biomass and water. The
images are sampled using the Carl Zeiss KS100
software, and compressed and stored in the JPG
file format.

2.3 Image analysis and data processing software

In a next step, the stored images are processed
and analyzed by means of the MATLAB Image Pro-
cessing Toolbox 3 (The Mathworks, Inc., Natick),
according to the procedure described in Jenné et
al. (2003). The processing and modelling of the



Fig. 2. Mapping of data points into the feature
space, where a linear separator can be used.

resulting data, as described in Sections 4 and 5, is
performed with the LS-SVMlab 1.5 tool, a third-
party MATLAB toolbox by Suykens et al. (2002).

3. LEAST SQUARES SUPPORT VECTOR
MACHINES

Support vector machines (SVM) is a state-of-
the-art method used for solving highly non-linear
classification or modelling problems using linear
techniques. The basis of the method is the map-
ping of all available data points to a feature space,
thus transforming the problem into a simple linear
problem. Least squares support vector machines
(LS-SVM) express the training in terms of solv-
ing a linear set of equations instead of quadratic
programming as for the standard SVM case.

3.1 Feature space mapping

The easiest way to define two classes of data points
is using a simple linear separator. Unfortunately,
very few classification problems can be solved this
way. A possible solution is to map the data points
{xk}N

k=1 to a feature space, where a linear separa-
tor can be used, as illustrated in a qualitative way
in Figure 2. This mapping is performed by the
non-linear function ϕ(·), which is not explicitly
known, but implicitly defined by satisfying the
condition ϕ(xi)ϕ(xj) = K(xi,xj), where K(·, ·) is
called the kernel function. There are a few possible
choices for the kernel function, but in the context
of this paper the commonly used RBF kernel has
been selected:

K(xi,xj) = exp

(
− ‖xi − xj‖22

σ2

)

where σ is a parameter specifying the width of the
kernel.

3.2 Classification function

Given a training set composed of N labelled data
points {xk, yk}N

k=1, where xk ∈ Rm is the k-th

Fig. 3. Sample pairwise plots of the retained
parameters. General bulking (+) and non-
bulking (o) areas can easily be identified.

input, and yk ∈ R the corresponding class label
(yk ∈ {−1, 1} in the binary case), a classification
function is constructed as proposed by Suykens
and Vandewalle (1999).

y(x) = sign

(
N∑

k=1

αkykK(x,xk) + b

)

where αk are the support values and b is a real
constant.

4. INPUT PARAMETER SELECTION

The image analysis algorithm offers 9 different
variables for use as inputs to the classification



function. Since some of these parameters are heav-
ily correlated with others, the most relevant ones
need to be selected before the classification func-
tion is trained.

The available parameters are divided into three
categories. The first category consists of parame-
ters related to the filament properties (filament
length), the second category relates to the floc
edges (convexity, form factor and fractal dimen-
sion) and the third to the general floc shape (as-
pect ratio, equivalent diameter, reduced radius of
gyration, roundness and solidity). Next, the most
significant parameters in the LS-SVM context
for each category are selected within a Bayesian
evidence framework. The retained variables are
the filament length (FL), the fractal dimension
(FD) and both the roundness (R) and solidity (S),
which are all defined as in Jenné et al. (2004).

Visual inspection reveals that on pairwise plots of
the retained parameters general bulking or non-
bulking areas can easily be defined, as illustrated
in Figure 3. This supports the assumption that
the retained parameters are suitable for the con-
struction of a classification function.

5. LS-SVM TRAINING

Because of their limited size, the four available
data sets are combined into a training and a val-
idation data set. For each possible arrangement
of these data sets, the classification function is
trained with a 10-fold cross validation. The num-
ber of misclassifications is used as a cost function,
and the model parameters (the kernel parameter
σ, the regularization parameter γ, the support val-
ues αk and the constant b) are obtained through
Bayesian optimization.

After training, the classification function is vali-
dated on the remaining data points, and the num-
ber of misclassifications is used as a performance
measure.

Table 1. Performance issues when using
the first experiment for training.

FL, FD, R

Training Validation Misclass. Misclass.
experiments experiments during during

training validation

1 2, 3, 4 2% 26%
2, 3, 4 1 13% 30%

FL, FD, S

Training Validation Misclass. Misclass.
experiments experiments during during

training validation

1 2, 3, 4 2% 26%
2, 3, 4 1 13% 49%

Fig. 4. Cut-through of the classification surface
along R = 0, with the first experiment
used as training data (top) and used
as validation data (bottom). The clear
difference between both views is indicative
for the extrapolability problems with the
first data set.

6. RESULTS

6.1 Data set selection

During the training of the classification function
to distinguish between bulking and non-bulking
situations in an activated sludge wastewater treat-
ment plant, a large influence of the first experi-
ment on the performance is noticed, with drastic
differences between the cases where the first ex-
periment is used as a training set and the cases
where it is used as a validation set. This can
be seen in Table 1, where the first data set’s
2% misclassification rate when used for training
jumps to 30% when the set is used for validation.
When a cut-through of the classification boundary
is made, the difference between both cases can
clearly be observed, as illustrated in Figure 4. This
significant difference in the classification function
parameters leads to the conclusion that the first
experiment is incompatible with the subsequent
experiments. Because the difference between the
first experiment on the one hand and the subse-
quent experiments on the other hand (different
substrate and loading profiles) supports the in-



Fig. 5. ROC curve of the classification function
trained on the second and fourth experiment
for training (top) and validation (bottom),
with an area of 0.92 and 1.00 respectively.
These values indicate a well-performing
classifier for the used data sets.

compatibility conclusion, the data from the first
experiment are discarded, and training and valida-
tion is performed using the data from the second,
third and fourth experiment only.

Table 2. Training and validation results
after omitting the first experiment.

FL, FD, R

Training Validation Misclass. Misclass.
experiments experiments during during

training validation

2 3, 4 0% 32%
3 2, 4 0% 16%
4 2, 3 3% 42%

2, 3 4 8% 26%
2, 4 3 19% 3%
3, 4 2 9% 21%

FL, FD, S

Training Validation Misclass. Misclass.
experiments experiments during during

training validation

2 3, 4 17% 30%
3 2, 4 2% 18%
4 2, 3 17% 34%

2, 3 4 8% 21%
2, 4 3 17% 15%
3, 4 2 10% 21%

Fig. 6. Cut-through of the classification surface
along R = 0 for the classifier trained (top)
and validated (bottom) on the second and
fourth experiment. Both cases result in
similar views. Only the central area of the
plots needs to be considered, as the edges of
the view are less reliable due to extrapolation
issues.

6.2 Classification results

After omitting the first experiment from the data,
a new training is performed, with the results
summarized in Table 2. These results also clearly
demonstrate that, using the proposed approach,
a good classifier to distinguish between bulking
and non-bulking situations in an activated sludge
wastewater treatment plant can be constructed.
The best results are obtained when the classi-
fication function is trained on the second and
fourth experiment and validated on the third ex-
periment, using the roundness as floc parameter.
Using the floc solidity instead of the roundness
results in a classifier with a slightly worse per-
formance. The good performance of this classi-
fier can also be seen when the ROC-curves 2 are
generated for both training and validation, with
an area of 0.91 for the training and 1.00 for the
validation, indicating a well-performing classifier

2 A Receiver Operator Characteristic curve is a measure
for the quality of a separator. The closer the spanned area is
to 1, the better the classifier. If the area is 0.5, the classifier
is worthless.



in both cases. These ROC-curves are illustrated
in Figure 5.

Lastly, it is tested whether or not the best-case
training and validation data sets are compatible.
This is achieved by comparing the classifiers by
making various cut-throughs of the classification
surface, as also described in Section 6.1. The
classification boundaries identified on the second
and fourth experiment on the one hand and on
the third experiment on the other hand show a
very similar evolution, as illustrated in Figure 6.
Only the central area of these plots needs to
be considered, as the edges are less reliable due
to extrapolation issues. This observation leads
to the conclusion that the proposed grouping of
experiments leads to data sets with a similar
information content.

7. CONCLUSION

In this paper, a classifier for activated sludge im-
age analysis data is constructed using an LS-SVM
approach, in order to exploit these data and ob-
tain an objective and time saving substitute for
the classic SVI measurement. The selected image
analysis parameters are the filament length, the
floc fractal dimension, and either floc roundness
or solidity. After a first training round, it is ob-
served that the data from the first experiment
are inconsistent with the data from the subse-
quent experiments, and training and validation
are performed using data from these subsequent
experiments only. After reviewing the results from
this second classification training, it is observed
that a valid classifier is obtained when the second
and fourth experiment are used to compose the
training data set, and the third experiment is
used for validation. Another conclusion is that the
best floc parameter is the floc roundness, with
the solidity performing slightly worse. However,
further experiments need to be conducted in order
to confirm these conclusions.
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