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Abstract: This paper proposes an algorithmic framework for optimal mode switches
in hybrid dynamical systems. The problem is cast in the setting of optimal control,
whose variable parameter consists of the switching times, and whose associated
cost criterion is a functional of the state trajectory. The number of switching times
(and hence of switching modes) is also a variable which may be unbounded, and
therefore the optimization problem is not defined on a single metric space. Rather,
it is defined on a sequence of spaces of possibly increasing dimensions. The paper
characterizes optimality in terms of sequences of optimality functions and proposes
an algorithm that is demonstrably convergent in this context. Copyright c©2005
IFAC.
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1. INTRODUCTION

Switched dynamical systems are often described
by differential inclusions of the form

ẋ = ∈ {fα(x(t), u(t)}α∈A, (1)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rk is
the input (control), t ∈ [0, T ] for a given T >
0, and {fα : Rn×k → Rn}α∈A is a collection
of functions parameterized by α belonging to
some set A. Let {τi}N

i=1 ⊂ [0, T ] be a monotone-
increasing set of switching times, namely times
at which the parameters α are changed. Thus,
denoting by α(i) the ith consecutive value of α,
Eq. (1) assumes the following form,

ẋ = fα(i)(x, u), for all i ∈ [τi−1, τi), i = 1, . . . , N,
(2)

where we define τ0 := 0 and τN+1 := T . Such
hybrid systems arise in a variety of application
domains including robotics (Arkin, 1998), man-
ufacturing (Boccadoro and Valigi, 2003; Cassan-

dras et al., 2001), power converters (Flieller et
al., 1998), and scheduling of medical treatment
(Verriest, 2003). More generally, they characterize
situations where a controller has to switch atten-
tion among various subsystems, or collect data
sequentially from a number of sensory sources.

Recently there has been a mounting interest in
the optimal control of such systems, where the
variable parameter consists of the switching law as
well as the input function, and the cost criterion is
comprised of a functional defined on the state tra-
jectory and the input function. Ref. (Branicky et
al., 1998) defined a general framework for optimal
control, and (Sussmann, 2000; Shaikh and Caines,
2002) developed variants of the maximum prin-
ciple. Refs. (Bemporad and Morari, 2000; Guia
et al., 2001; Rantzer and Johansson, 2000) con-
sidered piecewise-linear or affine systems, while
Refs. (Xu and Antsaklis, 2002a; Xu and Antsak-
lis, 2002b; Egerstedt et al., 2003a) focused on



autonomous nonlinear systems without an exter-
nal input, and investigated numerical algorithms
for their optimization. In these optimal control
problems, the parameter consists of the switching
times while the sequence of switching modes (i.e.,
the functions in the right-hand side of Eq. (2)) are
given.

The optimal control problem becomes more com-
plicated when the modal sequencing, namely the
sequence of functions fα(i) in the right-hand side
of Eq. (2), constitutes part of the design variable.
What we then have is a discrete-variable problem,
in fact we have a scheduling problem. With this
problem in mind, Ref. (Egerstedt et al., 2003b) de-
rived a variational formula for inserting a switch-
ing mode at a given time t ∈ [0, T ]. Specifically,
consider an autonomous system of the form

ẋ = f(x, t) (3)

where

f(x, t) = fα(i)(x), t ∈ [τi−1, τi), i = 1, . . . , N, (4)

and let g(x) : Rn → Rn be a function. Fix a time
τ ∈ (0, T ), and consider modifying the function f
by inserting the function g in an interval of length
λ centered at τ , (τ − λ/2, τ + λ/2), for λ > 0. In
other words, g is a “new” modal function inserted
at time τ . Let us view the cost functional as a
function of λ. Then, a formula for the one-sided
derivative of the cost functional with respect to λ,
at the point λ = 0, was developed in (Egerstedt
et al., 2003b). This formula allowed us to ex-
tend the gradient-descent algorithms developed
in (Egerstedt et al., 2003a) from the case where
the number of switching times was a given con-
stant to the case where the number of switching
times, and to an extent the switching sequence
itself, were part of the variable. Of course we
cannot claim to have solved the modal-sequencing
(scheduling) problem to the extent of computing a
global minimum, but we have managed to overlay
a continuous structure upon the discrete problem,
that facilitates the deployment of gradient-descent
algorithms for computing local minima. The theo-
retical underpinnings of this approach is the main
concern of this paper.

The main difficulty in analyzing an algorithm
that adds switching times is that the optimization
problem is not defined on a single vector space,
but rather, the parameter seems to belong to a
sequence of Euclidean spaces with growing dimen-
sions. Such problems have not had a systematic
framework for analysis, and they pose theoretical
and practical challenges. In the theory of opti-
mization, the concept of optimality functions has
provided a measure of how far or close a point is
from satisfying given optimality conditions, and
this measure being“close to 0”provides a practical
stopping rule for an algorithm (see (Polak, 1997)).

For example, the magnitude of the gradient in
unconstrained problems qualifies as an optimal-
ity function, and a practical rule for stopping an
algorithm is when the gradient of the function is
small. This, however, assumes a single parameter
space containing all the iteration points of an
algorithm. No such concept exists for situations
involving nested spaces with growing dimensions,
and this paper provides such a framework and uses
it to characterize and prove convergence for the
problem at hand. As a last remark we mention
that the results derived in this paper works for
the case when the cost function, L(x(t)), is time
variant and when we have constraints on the order
of the modal sequence.

Section 2 presents our algorithmic approach and
the challenges it poses. Section 3 provides a nu-
merical example, and Section 4 concludes the
paper. The algorithm’s convergence analysis is
highly technical and hence, and due to space con-
straints, we relegate it to a Technical Memoran-
dum (Axelsson et al., 2004) that can be down-
loaded from the web.

2. PROBLEM FORMULATION AND AN
ALGORITHMIC APPROACH

Consider the hybrid dynamical system described
by Eqs. (3) and (4). Defining, for simplicity, the
notation α(i) = i, and recalling that τ0 := 0 and
τN+1 := T , the system described by Eqs. (3) and
(4) can be described by the following equation,

ẋ = fi(x), t ∈ [τi−1, τi), i = 1, . . . , N, (5)

where we henceforth assume that the initial con-
dition x(0) = x0 is given and fixed. We also
assume that the modal set A is finite but N may
be arbitrarily large, so that a particular modal
function fα, α ∈ A, may appear multiple times
in the modal sequence {fi}N+1

i=1 . Let L : Rn → R
be a cost function defined on the state variable,
and define the cost functional J on the switching
times τ1, . . . , τN by

J =
∫ T

0

L(x(t))dt. (6)

The dependence of J on the switching times is
apparent from Eq. (5). We make the following
assumption.

Assumption 2.1. (i). The functions fα, α ∈ A,
and L, are twice continuously differentiable on Rn.
(ii). For every compact set Γ ⊂ Rn there exists a
constant K > 0 such that, for every x ∈ Γ, and
for every α ∈ A,

||fα(x)|| ≤ K(||x||+ 1). (7)

This assumption guarantees that, with the given
initial condition x0, the differential equation (5)



has a unique solution x(t) on the interval [0, T ],
which is confined to a bounded set in Rn that does
not depend on the values of the switching times
(τi), their number (N), or the order of the switch-
ing functions (fi(x)). Moreover, the assumption
guarantees that J is continuously differentiable
in the switching times. Let us define the function
f(x, t) by the right-hand side of (5), namely,

f(x, t) = fi(x), t ∈ [τi−1, τi) i = 1, . . . , N +1. (8)

Then the state trajectory x(t) is continuous in t
and we define the notation xi := x(τi). Next, let
us define the costate p(t) ∈ Rn by the following
differential equation,

ṗ(t) = −
(

∂f

∂x
(x, t)

)T

p(t) −
(

∂L

∂x
(x)

)T

, (9)

with the boundary condition p(T ) = 0. Then
the costate trajectory p(t) is continuous in t,
and we define the notation pi := p(τi). The
following formula for the partial derivative dJ/dτi

was derived in (Egerstedt et al., 2003a):

dJ

dτi
= pT

i

(
fi(xi)− fi+1(xi)

)
. (10)

Let us denote by σ the given sequence of modal
functions {fi}N

i=1, and denote by Pσ the problem
of minimizing J for the given σ. Note that σ speci-
fies N and the functions fi but not their switching
times, which constitute the parameter for Pσ. The
following result, concerning a necessary optimality
condition, was derived in (Egerstedt et al., 2003b).

Proposition 2.1. Suppose that τ̄N := (τi, . . . , τN )T

is an optimal point for the problem Pσ. Then:

(1) If τk−1 < τk = τn < τn+1 for a pair of
integers k and n satisfying the inequalities
1 ≤ k ≤ n ≤ N , then,

n∑

j=k

dJ

dτj
= 0, (11)

and for every i = k, . . . , n,
i∑

j=k

dJ

dτj
≤ 0. (12)

(2) If 0 = τn < τn+1 for some integer n ∈
{1, . . . , N}, then for every i = 1, . . . , n,

n∑

j=i

dJ

dτj
≥ 0. (13)

Similarly, if τk−1 < τk = T for some integer
k ∈ {1, . . . , N}, then for every i = k, . . . , N ,

i∑

j=k

dJ

dτj
≤ 0. (14)

Proof. See (Egerstedt et al., 2003b). 2

Next, suppose that the problem Pσ has been
solved, for a given modal sequence σ having N

switching points, to the extent of computing a vec-
tor τ̄N satisfying the above optimality condition.
Even if this is a global minimum, it may be possi-
ble, of course, to further reduce the value of J by
altering the sequence σ. An incremental approach,
proposed in (Egerstedt et al., 2003b), is based on
the following result. Let g be a modal function,
namely g = fα for some α ∈ A, and fix τ ∈ (0, T ).
Consider inserting the function g at the time τ for
the duration of λ seconds, where λ > 0. By this
insertion we are introducing two new switching
points, one at τ−λ/2 and the other at τ+λ/2, and
the modal function g between them. Let us denote
by Jg,τ (λ) the effect of λ on the cost functional
J , where we note the dependence on the modal
function g and the switching time τ . Suppose now
that τ /∈ {τ1, . . . , τN}, namely it is not one of the
switching points, and suppose that τ ∈ (τi, τi+1)
for some i = 1, . . . , N . Recall the definition of the
costate, p, as given by Eq. (9). Then the following
formula characterizes the one sided derivative of
J at λ = 0:

dJg,τ (0)
dλ+

= p(τ)T
(
g(x(τ))− fi+1(x(τ))

)
. (15)

We point out that similar insertions of multiple
modal functions at time τ , according to prece-
dence rules mandated by the system, are possible
as well (see (Egerstedt et al., 2003a)), but to keep
the discussion simple we confine the discussion to
the case where the insertions are made one-at-a-
time in the manner described above, and where
the sequence σ has no precedence constraints.

The following algorithm can be used to reduce the
value of J .

Algorithm 2.1.
Given: A modal sequence σ having N switching
points.
Step 1. Use a gradient-descent algorithm to com-
pute a feasible vector τ̄N satisfying the optimality
condition for Pσ.
Step 2. Compute the number ΘN defined by

ΘN := min{dJg,τ (0)
dλ+

| g = fα; α ∈ A, τ ∈ (0, T )}.
(16)

Step 3. If ΘN = 0 then stop and exit. If ΘN < 0
then, with the pair (g, τ) comprising the argmin
in (16), append to σ two switching points at the
time τ with the modal function g between them,
and goto Step 1.

We mention that when the algorithm goes to Step
1 from Step 3, it will separate the two switching
times inserted in Step 3. The dimension of the
problem the algorithm solves at Step 1 increases
by 2 from one iteration to the next.

The condition ΘN = 0 constitutes a necessary
local-optimality condition. Generally, ΘN ≤ 0
since inserting a function g = fα during an in-



terval where fα acts as the dynamic response will
give 0 for the min term in Eq. (16). Consequently,
we view ΘN as an optimality function defined on
the points computed by Step 1 of the algorithm.

From theoretical and practical standpoints there
are two apparent problems associated with this
algorithm. First, the parameter space grows (pos-
sibly) without bound, and hence we have to define
an appropriate notion of convergence. Second, the
one-sided derivative dJg,τ (0)/dλ+ is discontinuous
in τ when τ passes through a switching time
τi; see Eq. (15). To address these difficulties we
characterize convergence in an appropriate way,
and we use the special structure of the problem to
construct a convergent algorithm that is based on
Algorithm 2.1.

Consider the mth iteration of Algorithm 2.1. Step
1 concerns a modal sequence σ(m) having N(m)
switching times, and it computes, by a gradient-
descent algorithm, a vector τ̄N(m) satisfying the
optimality condition for the problem Pσ(m). The
descent algorithm generally computes a sequence
of iteration points, denoted by {τ̄(`)}, ` = 1, 2, . . .,
such that J(τ̄(` + 1)) ≤ J(τ̄(`)) and J(τ̄(`)) →
J(τ̄N(m)) as ` → ∞. We assume in the present
paper that the limit point τ̄N(m) is computed
exactly, although an implementation of the al-
gorithm will only compute an approximation to
it. Let us denote the starting point of this proce-
dure by τ̄(0) := (τ1(0), . . . , τN(m)(0)), and observe
that, for ` > 1, τ̄(0) was the point with which
Algorithm 2.1 returned from Step 3 to Step 1 in
its previous iteration. Now the next iteration point
of the procedure is τ̄(1), and it has the following
coordinates, τ̄(1) = (τ1(1), . . . , τN(m)(1)).

The specific algorithm deployed in Step 1 of Al-
gorithm 2.1 will determine whether Algorithm 2.1
converges or not. We require certain properties of
the first iteration of that algorithm, namely the
computation of τ̄(1) from τ̄(0); regarding subse-
quent iterations, we require nothing other that the
algorithm be of a gradient-descent type. From the
first iteration, we require the following property
of sufficient descent.

Property of sufficient descent. For every ε > 0
there exists η > 0 such that, in Step 1 of Algo-
rithm 2.1, if ΘN > ε, then J(τ̄(1))−J(τ̄(0)) ≤ −η.

Similar sufficient-descent properties have been
used to prove convergence of various algorithms;
see (Polak, 1997) for the general case, and
(Axelsson et al., 2004) for our particular algo-
rithm.

The computation of τ̄(1) from τ̄(0) involves an
Armijo step size along a descent curve. Tra-
ditionally, the Armijo step size (providing an
approximate-line minimization) is deployed along

a descent direction (Armijo, 1966; Polak, 1997),
but we have been unable to determine such a di-
rection that would yield convergence of Algorithm
2.1. Instead, we use a descent curve that consists
of a concatenation of multiple linear segments.
This curve, parameterized by λ ≥ 0, is denoted
by c(λ), and its segments are denoted by cν(λ),
ν = 0, 1, 2, . . .. The initial point and end point of
cν(λ) are denoted by t̄ν and t̄ν+1, respectively.
cν is linearly parameterized by λ ∈ [λν , λν+1]
for some end-points λν and λν+1 ≥ λν , so that
cν(λ) = t̄ν + (λ − λν)(t̄ν+1 − t̄ν)/(λν+1 − λν).
Defining h̄ν by h̄ν = (t̄ν+1 − t̄ν)/(λν+1 − λν), we
have that

cν(λ) = t̄ν + (λ− λν)h̄ν , (17)

with cν(λν+1) = t̄ν+1. Certainly cν(λν+1) =
cν+1(λν+1) so that c(λ) is a continuous curve
comprised of the concatenation of the segments
cν(λ), ν = 0, 1, . . ..

The segments cν(λ) are defined recursively in the
following manner. For ν = 0, let t̄0 = τ̄N(m), and
let λ0 = 0. Next, for ν ≥ 0, suppose we are given
t̄ν and λν ; we will define h̄ν and λν+1, so that
cν(λ) if defined for all λ ∈ [λν , λν+1] by (17), and
t̄ν+1 = cν(λν+1).

Let us return to the initial segment, c0(λ), whose
starting point is t̄0 = τ̄(0), and let t̄0 =
(t0,1, t0,2, . . . , t0,N(m)). Recall that Algorithm 2.1
enters Step 1 with this point from Step 3 of its
previous iteration. In the latter iteration, the al-
gorithm inserted a modal function g between two
identical switching times, denoted by τ . Thus, the
point t̄0 = (t0,1, t0,2, . . . , t0,N(m)) with which the
algorithm enters Step 1, has the following features:

(1) There exists i ∈ {1, . . . , N(m)} such that
τ = t0,i−1 = t0,i and g = fi.

(2) The modal function fi−1 and fi+1 are identi-
cal, namely fi−1 = fi+1, since the function fi

was inserted during the course of the mode
defined by this function.

(3) If we take out the switching times t0,i−1 and
t0,i (which are identical) and the modal func-
tion fi between them, we obtain the point
τ̄N−2 computed by Step 1 of Algorithm 2.1
in its previous iteration, and hence satisfy-
ing the optimality condition for the problem
Pσ(m−1).

The inserted switching point t0,i may or may
not have been equal to any one of the existing
switching times of the previous iteration. In any
case, we define k(i) := min{j ≤ i − 1 : t0,j =
t0,i−1} and we define n(i) := max{j ≥ i : t0,j =
t0,i}. Then we have the following equation (see
(Axelsson et al., 2004) for a proof):

n(i)∑

j=i

dJ

dt0,j
= −

i−1∑

j=k(i)

dJ

dt0,j
= ΘN(m). (18)



We define the curve cν(λ) by reducing t0,i−1 to
0 and increasing t0,i to T at the rate of -ΘN(m).
If t0,i−1 (t0,i, resp.) “bumps” into other switching
times on the way, then it “drags” them along with
it so that the order of the modal sequence is
maintained. Each such a “bump” causes a change
in the direction of c(λ), and hence this curve
consists of multiple linear segments. Formally,
consider ν ≥ 0. Given the initial point t̄ν and
the initial parameter λν of the segment cν(λ),
compute the rest of the segment as follows. Define:
kν(i − 1) := min{j ≤ i − 1 : tν,j = tν,i−1};
nν(i) := max{j ≥ i : tν,j = tν,i}; tν,−1 := −∞;
and tν;N(m)+2 := ∞. Define the direction h̄ν :=
(hν,1, . . . , hν,N(m)) by

hν,r =





ΘN , for all r ∈ {kν(i− 1), . . . , i− 1},
if tν,i−1 > 0

0, for all r ∈ {kν(i− 1), . . . , i− 1},
if tν,i−1 = 0

−ΘN , for all r ∈ {i, . . . , nν(i)},
if tν,i < T

0, for all r ∈ {i, . . . , nν(i)},
if tν,i = T

0, for all other r ∈ {1, . . . , N(m)
}
.

(19)
Finally, define λν+1 as follows for the case where
tν,i−1 > 0 or tν,N(m) < T :

λν+1 = min
{
λ > λν :

either tν,k(i) + (λ− λν)hν,k(i) = tν,k(i)−1,

or tν,n(i) + (λ− λν)hν,n(i) = tν,n(i)+1}. (20)

For the case where tν,i−1 = 0 and tν,N(m) = T ,
there is no need to define λν+1. Now the segment
cν(λ) is defined by Eq. (20) for all λ ∈ [λν , λν+1],
and t̄ν+1 is set to t̄ν+1 = cν(λν+1).

The computation of τ̄(1) from τ̄(0) involves the
Armijo step size along the curve c(λ) in the
following manner (see (Armijo, 1966)). Let us fix
α ∈ (0, 1) and a monotone-decreasing sequence
{λs}∞s=0 convergent to 0. Now, define λarm by

λarm = max{λs : s = 0, 1, . . . , such that

J(c(λs))− J(c(0)) ≤ −αλsΘ2
N}, (21)

and define τ̄(1) by τ̄(1) = cν(λarm).

Thus, the first iteration of the algorithm deployed
by Step 1 of Algorithm 2.1 computes τ̄(1) from
τ̄(0) by using the Armijo step size along the curve
c(λ), while the subsequent iterations have to use
a descent algorithm. We mention that a curve like
c(λ) may not constitute a descent curve in any
but the first iteration! We now state the following
convergence result.

Proposition 2.1. Suppose that Algorithm 2.1
computes a sequence of iteration points, τ̄N(m),
m = 1, 2, . . .,. Then,

lim
m→∞

ΘN(m) = 0. (22)

Proof. The proof is based on establishing the
sufficient-descent property; please see (Axelsson
et al., 2004). 2

3. NUMERICAL EXAMPLE

As an illustration, consider the problem of switch-
ing between the dynamics ẋ = Aix, i = 1, 2, 3,
given the system matrices

A1 =



−1.2 0 0

0 0.5 0
0 0 0.5


 , A2 =




0.5 0 0
0 −1.1 0
0 0 0.5


 ,

A3 =




0.5 0 0
0 0.5 0
0 0 −1


 .

Here, mode 1 stabilizes x1 while x2 and x3 are
destabilized. Similarly, mode 2 stabilizes x2, while
mode 3 stabilizes x3 at slightly different rates.
(x1 is driven to 0 faster in mode 1 than x2 in
mode 2, while x2 goes to 0 faster in mode 2 than
x3 in mode 3.) We consider the problem where
t ∈ [0, 1], and where we start with three modes
(mode 1, 2, and 3), with switches occurring at
τ1 = 0.2, τ2 = 0.8. After these switch-times have
been optimized using an Armijo steepest descent
algorithm, a new mode and two new switch times
are inserted.

In Figure 1 the result of running this algorithm
is shown. Note how, towards the end of the sim-
ulation, very little is gained as new modes are
inserted. The modal structure and the number of
switch times aggregated at each switch point is
shown in Figure 2.

20 40 60 80 100 120 140 160 180
2.9

3

3.1

3.2

3.3

J

Switch−Time Optimization

20 40 60 80 100 120 140 160 180
0

10

20

30

40

iteration

ca
rd

(τ)

Fig. 1. J is depicted as a function of the iteration
in the top figure. The lower figure shows how
the length of τ̄ increases as new switch times
are inserted.
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Fig. 2. The top figure shows the modal structure
of the final solution. Depicted is the amount
of time spent in what mode. The lower fig-
ure shows how the switching times aggregate
and the ”block length”, i.e. the number of
switching times aggregated together at each
switching point.

4. CONCLUSIONS

We have proposed a gradient-descent algorithm
for optimal control problems defined on switched-
mode systems. The variable parameter consists
of the switching times as well as certain aspects
of modes’ scheduling. We proved convergence of
the algorithm in an appropriate sense by using
optimality functions and techniques that had been
developed in its context.
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