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Abstract An Image Based Visual Servoing controller for the tip trajectory tracking of
rigid manipulators is considered in this paper. Inspired by the task space robot control, an
approach to design a visual control law, that takes into account the manipulator dynamics,
is proposed. Moreover, to avoid an excessive computational burden, two simplified
visual control laws are introduced supported by rigorous proofs of stability based on
Lyapunov theory. Simulation results show the effectiveness of these simplified controllers.
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1. INTRODUCTION

When high performance position control of a manip-
ulator is considered, visual feedback can considerably
improve the precision of the end effector positioning.
Visual information, unlike standard position sensors
yields a direct measurement of the tip position, avoid-
ing estimation errors due to a rough knowledge of
the physical parameters characterizing the mechanical
chain (e.g. gear train elasticity, friction, gear back-
lash). For these reasons the interest towards the control
of robots by means of visual feedback (so called visual
servoing (Hutchinson et al., 1996)) has been increas-
ing in recent years.

The present work deals with the eye-in-hand Image
Based Visual Servoing of rigid manipulators, with an
approach that is inspired by the well-known task space
robot control (Sciavicco and Siciliano, 2000).
While suffering from some known (Chaumette, 1998)
limitations, the IBVS approach is still an attractive
solution as it computes the feedback control directly
from the visual information, and does not require any
further knowledge of the physical parameters of the

1 This work has been supported by ASI (Italian Space Agency)
under contract number ASI I/R/120/02.

manipulator. Thus, it effectively represents a suitable
approach to design a high performance position con-
troller.
On the other hand, by analogy with positional task
space control, at least two visual control structures
can be derived: a PD controller based on the trans-
pose Jacobian control law, as in (Kelly, 1996; Kelly
et al., 2000), and a computed torque control law.
Although the PD controller proposed in (Kelly et
al., 2000) is particularly simple, as it does not require
the calculation of the inverse of the Jacobian and is
independent of the robot inertia and Coriolis matrices,
it depends on the design of two gain matrices that
cannot be clearly related to the closed loop desired
dynamics.

A fully linearizing task space control law is first de-
rived in the present paper. Then, in order to reduce
the computational burden, two simplified visual con-
trollers are presented, where computation of the in-
verse and time derivative of the Jacobian and estima-
tion of the target acceleration, required by the com-
puted torque algorithm, are avoided. Furthermore the
closed loop stability of the system under the simplified
control laws is proven invoking the Lyapunov theory.
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Figure 1. A simple camera model

Finally, simulation results are presented, focusing on
the model of a two link planar manipulator: the tra-
jectory tracking performance of the simplified visual
controllers, when an increasing acceleration of the
target is considered, are investigated.

The paper is organized as follows. In Section 2 the
dynamic models of the camera and of a rigid manipu-
lator are described. The control problem is formulated
in Section 3 and a solution, based on the task space
control technique, is presented. In Section 4 two sim-
plified control laws are proposed and a stability analy-
sis, based on the Lyapunov theory, of the closed loop
system under these simplified controllers is shown.
Finally, Section 5 presents a simulation based on a
two link planar manipulator. Conclusions are given in
Section 6.

2. ROBOTIC SYSTEM MODEL

2.1 Manipulator dynamics
The dynamic model of a rigid manipulator with n links
can be written in the following form

M(q)q̈+ f(q, q̇)+g(q) = u (1)

where M is the inertia matrix, q = (q1 q2 . . . qn)
T is

the vector of joint variables, f is the vector containing
Coriolis and centrifugal terms, g is the vector of grav-
itational torques and u = (τ1 τ2 . . . τn)

T is the vector
of control torques applied at the n joints.

2.2 Camera model
Assuming that the camera is modelled by perspective
projection (Hutchinson et al., 1996), a point cΠ =
[X Y Z]T , whose coordinates are expressed with re-
spect to the camera frame c (Fig. 1), will project onto
a point π = [x y]T of the image plane given by

[
x
y

]

= −α
λ
Z

[
X
Y

]

where λ is the focal length, α is the scaling factor
in pixel per meter due to camera spatial sampling
and Z < 0 according to the chosen orientation of the
camera frame.

Let us define an image feature as any structural feature
that can be extracted from an image and an image
feature parameter as any real-valued quantity that can

be calculated from one or more of them (Hutchinson
et al., 1996).

Consider an eye-in-hand camera system and a moving
target: a linear differential relation between the rela-
tive motion of the target, with respect to the camera,
and the image feature motion can be stated as follows

ξ̇ = Jimage(r,pt)

[
ṙ
ṗt

]

where ξ = [ξ1 . . . ξ f ]
T is a vector of f image feature

parameters, r the vector of end effector coordinates
with respect to any parametrization of the task space
and pt the vector of target coordinates with respect
to the robot frame. The matrix Jimage ∈ ℜ f×(s+T ),
where s and T are the dimensions of the task space
and the number of degrees of freedom of the target,
respectively, is the so-called image Jacobian

Jimage(r,pt) =

[
∂ξ
∂r
︸︷︷︸

JR

∂ξ
∂pt
︸︷︷︸

JT

]

The analytical expression of the image Jacobian de-
pends on the actual parameters chosen to describe the
considered image features (see (Kelly et al., 2000)
for the analytical expressions of the main image Ja-
cobians).

3. A VISUAL SERVO CONTROLLER

Let ξ ∈ ℜ f be a generic feature parameter vector and
J (q,ξ ,Z) the corresponding Jacobian, ξ d ∈ ℜ f the
desired feature parameter vector, which is assumed to
be constant, and define the image feature error ξ̃ ∈ℜ f

as ξ̃ = ξ d −ξ .

The control problem can be formulated as follows:
design a controller that computes the robot torques u
in such a way that the image feature error ξ̃ vanishes.

The following assumptions are enforced to ensure that
the control problem is solvable and the task space
inverse dynamic approach can be applied:

A1 for any target position there exists a robot joint
configuration for which the feature error vanishes,
i.e. ∀Π ∃qd : ξ d = ξ (qd ,Π);

A2 the desired joint configuration qd is an isolated
solution of ξ (q,Π) = ξ d ;

A3 the Jacobian J (q,ξ (q,Π),Z(q,Π)) is continu-
ously differentiable with respect to each entry of
q and Π.

The controller design is based on the model of the
manipulator and is inspired by the well-known task
space inverse dynamic robot control (Sciavicco and
Siciliano, 2000). If a feedback control of the form

u(q, q̇) = f1(q, q̇)+M(q)v

is designed, providing a compensation of the nonlinear
terms in f1, the robot model (1) reduces to a double
integrator system q̈ = v.



Consider now the differential relation introduced in
the previous section

ξ̇ = J(q,ξ ,Z)

[
q̇
Π̇

]

and its time derivative

ξ̈ = J(q,ξ ,Z)

[
q̈
Π̈

]

+ J̇(q, q̇,ξ , ξ̇ ,Z, Ż)

[
q̇
Π̇

]

If a control v as

v = JR(q,ξ ,Z)−1
[

KD
˙̃ξ +KPξ̃ − JT (q,ξ ,Z)Π̈

−J̇R(q, q̇,ξ , ξ̇ ,Z, Ż)q̇− J̇T (q, q̇,ξ , ξ̇ ,Z, Ż)Π̇
]

(2)

is chosen, assuming the desired feature vector con-
stant, the double integrator system gives rise to the
following equation in the feature errors

¨̃ξ +KD
˙̃ξ +KPξ̃ = 0 (3)

where KP and KD can be chosen as diagonal positive
definite matrices. The rate of convergence of the fea-
ture errors can thus be selected arbitrarily, assigning
the frequencies ωi and the damping factors ζi that
characterize the pair of eigenvalues corresponding to
each feature error in (3) and picking matrices KP and
KD as follows

KP = diag
(
ω2

1 . . . ω2
f
)

KD = diag
(
2ζ1ω1 . . . 2ζ f ω f

)

4. A SIMPLIFIED VISUAL CONTROLLER

The visual control law (2) can be rather difficult to
implement as it requires the calculation of the inverse
and of the time derivative of the Jacobian matrix. A
simplified controller implementation can be derived
from (2) as follows

v = JR(q,ξ ,Z)#
[

KD
˙̃ξ +KPξ̃ − JT (q,ξ ,Z)Π̈

]

(4)

where the inverse of the Jacobian is replaced by
JR(q,ξ ,Z)#, a suitable pseudo inverse, and its time
derivative is neglected. Moreover, the computation of
the target acceleration Π̈, that can be achieved through
computer vision techniques (Horn, 1986), might be
considered an excessive burden. A further simplifica-
tion of the control law (4), obtained by neglecting the
target acceleration, yields

v = JR(q,ξ ,Z)#
[

KD
˙̃ξ +KPξ̃

]

(5)

This Section will be devoted to the stability analysis
of the closed loop under the simplified visual control
laws (4) and (5). Using these control laws, the feature
error dynamic (3) becomes

ė = Ae−B∆BT Ae+Bd (6)

where

A =

[
0 f I f
−KP −KD

]

B =

[
0 f
I f

]

∆ = I f − JR(q,ξ ,Z)JR(q,ξ ,Z)#

and

e =

[

ξ̃
˙̃ξ

]

d = −J̇(q, q̇,ξ , ξ̇ ,Z, Ż)

[
q̇
Π̇

]

if the control law (4) is used, or

d = −J̇(q, q̇,ξ , ξ̇ ,Z, Ż)

[
q̇
Π̇

]

− JT (q,ξ ,Z)Π̈

if the control law (5) is used.

The following assumptions are adopted.

Assumption 1. A damped least squares inverse of
the Jacobian JR (Nakamura and Hanafusa, 1986),
(Wampler, 1986) is adopted, i.e.

J#
R =

(
JT

R JR + ς 2I
)−1

JT
R

where ς is the damping factor.

Assumption 2. All the feature errors have the same
closed loop dynamics, i.e.

KP = ω2
n I f KD = 2ζ ωnI f

Assumption 3. The following relation holds for all
q and Π along the considered trajectory (Wampler,
1986)

‖∆‖ ≤ γ =
ς2

ς2 +σ 2
Rm

where σRm is the minimum of the smallest singular
value of the Jacobian matrix JR along the considered
robot and target trajectory.

Assumption 4. Define Ni(q,Π) as

Ni(q,Π) =

[
∂ ji

∂q
∂ ji

∂Π

]

being jT
i the ith row of matrix J (q,ξ (q,Π),Z(q,Π)).

Vector

d1 = −J̇(q, q̇,ξ , ξ̇ ,Z, Ż)

[
q̇
Π̇

]

can be bounded as follows

‖d1‖ ≤
ν

σ 2
m
‖ξ̇‖2

where σm is the minimum of the smallest singular
value of the Jacobian matrix J along the considered
robot and target trajectory and

ν = max
q,Π

√
√
√
√

f

∑
i=1

‖Ni(q,Π)‖2

being ‖Ni‖ the largest singular value of matrix Ni for
all q and Π along the considered trajectory.

Assumption 5. Vector

d2 = −JT (q,ξ ,Z)Π̈
can be bounded as follows

‖d2‖ ≤ σTM χM

where σTM is the maximum of the largest singular
value of the Jacobian matrix JT along the considered
robot and target trajectory and

χM = max
t

‖Π̈(t)‖



Note that from the structure of matrices A, KP, KD and
Assumption 2 it can be easily concluded that system
(6) is actually composed of f independent subsystems,
with state matrices

A =

[
0 1

−ω2
n −2ζ ωn

]

B =

[
0
1

]

Matrices (A,B) of the whole system can be re-
arranged, through a suitable change of coordinates, as
follows

A = bdiag(A . . .A) B =
(
B

T
1 . . .BT

f
)T

(7)

where the symbol bdiag denotes a block diagonal
matrix and

Bi =
[
02,i−1 B 02, f−i

]

Consider a scalar β > 0 and assume that parameters
ωn and ζ are such that

ω2
n = β 2κ01 2ζ ωn = β κ02

with
κ02 > 2 κ01 > κ02 −1 (8)

Let

Ao =

[
0 1

−κ01 −κ02

]

and Po is the solution of the algebraic Riccati equation

(Ao + I2)
T
Po +Po(Ao + I2)+ γ2

PoBB
T
Po

+A
T
o BB

T
Ao = 0 (9)

The following stability results can be stated:

Theorem 1. Consider the simplified visual control law

v = JR(q,ξ ,Z)#
[

KD
˙̃ξ +KPξ̃ − JT (q,ξ ,Z)Π̈

]

where JR(q,ξ ,Z)# is a damped least squares inverse
of the Jacobian, as stated in Assumption 1, and KP and
KD are gain matrices that satisfy Assumption 2.
Choose the values of the parameters κ01 and κ02 in
such a way that (8) holds and

‖BT
Ao [sI − (Ao + I2)]

−1
B‖∞ < γ−1

Let Po be a positive definite solution of (9) and

β̃ = β/‖P1/2
o B‖

The origin of the state space (ξ̃ , ˙̃ξ ) is an asymptoti-
cally stable equilibrium point whose region of attrac-
tion includes the region

f

∑
i=1

[

ξ̃ i
˙̃ξ i

]T

BPoB

[

ξ̃ i
˙̃ξ i

]

< ρ2 (10)

where B = diag(β ,1) and ρ = σ2
m

ν β̃ .

Theorem 2. Consider the simplified visual control law

v = JR(q,ξ ,Z)#
[

KD
˙̃ξ +KPξ̃

]

where JR(q,ξ ,Z)# is a damped least squares inverse
of the Jacobian, as stated in Assumption 1, and KP and

KD are gain matrices that satisfy Assumption 2.
Choose the values of the parameters κ01 and κ02 in
such a way that (8) holds and

‖BT
Ao [sI − (Ao + I2)]

−1
B‖∞ < γ−1

Let Po be a positive definite solution of (9) and

β̃ = β/‖P1/2
o B‖

Then, if the following condition holds

β̃ >
2

σm

√
νσTM χM (11)

there exist two convex regions, S1 and S2, of the state
space such that the origin of the state space belongs
to S1, being S1 ⊂ S2, and it is locally uniformly
ultimately bounded (Corless and Leitmann, 1981).

Furthermore, these regions can be characterized as
follows

S1 =







[

ξ̃
˙̃ξ

]

:
f

∑
i=1

[

ξ̃ i
˙̃ξ i

]T

BPoB

[

ξ̃ i
˙̃ξ i

]

< R2
1






(12)

S2 =







[

ξ̃
˙̃ξ

]

:
f

∑
i=1

[

ξ̃ i
˙̃ξ i

]T

BPoB

[

ξ̃ i
˙̃ξ i

]

< R2
2






(13)

where B = diag(β ,1) and

R1 =
σ 2

mβ̃ −σm

√
(

σmβ̃
)2

−4νσTM χM

2ν

R2 =
σ 2

mβ̃ +σm

√
(

σmβ̃
)2

−4νσTM χM

2ν

See Appendix for the proof of both theorems.

5. NUMERICAL SIMULATIONS

A two link planar manipulator with a camera attached
to the arm tip is here considered in order to test the vi-
sual servo controller (in the following this manipulator
will be called SLAVE). The manipulator is composed
of two rigid arms of 0.4 m length each. The camera
is characterized by a focal length λ of 8 mm and an
averaged scale factor of 100 pixel/mm. The target is
made up of two points, lying at the extremes of a 12 cm
length segment, and is fixed at the arm tip of a two
link planar manipulator that has the same mechanical
specifications of the SLAVE (in the following this ma-
nipulator will be called MASTER). The MASTER and
the SLAVE manipulators move on two parallel planes
at a distance of 80 cm.

The performance of the visual servo control law (2)
and of the simplified control law (5) are here com-
pared. Both the MASTER and the SLAVE manipulators
start from an outstretched position and the MASTER



describes a trajectory in joint space, characterized by
the following fifth order polynomial relation

qM(t) =
(
q f −qo

) t3

T 3

[

10−15
t
T

+6
t2

T 2

]

where qo = (−60◦ − 30◦)T and q f = (60◦ 30◦)T are
the initial and final angle, respectively. The duration
T of the maneuver varies from 40 s to 5 s, giving rise
to an increase of the target acceleration and, conse-
quently, of the joint velocities.
Although in the simplified control law (5) the target
acceleration has been neglected, Fig. 2 shows that the
ratio between the tip position error obtained using the
visual control law (2) (dash-dot line) and the simpli-
fied control law (5) (dashed line) does not significantly
increase.
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Figure 2. Tip position errors for increasing target
acceleration (the solid line is the tip position error
resulting from a standard task space computed
torque control law, when the direct kinematic is
affected by a 10 % error on the link length).

6. CONCLUSIONS

In this paper a visual servo controller inspired by the
task space computed torque control method has been
proposed. In order to reduce the computational burden
of this control law, two simplified controllers have
been presented, supported by a stability analysis based
on the Lyapunov theory. Simulation results, obtained
on the model of a two link planar manipulator and a
target made of two object feature points, showed the
effectiveness of the proposed simplified visual servo
controllers.

APPENDIX

The following preliminary results are first given, omit-
ting the proofs.

Lemma 1. Matrix A + β I2 f is Hurwitz ∀β provided
that parameters κ01 and κ02 satisfy conditions (8).

Lemma 2. Consider the transfer function

Tβ (s) = −BT A
[
sI − (A+β I2 f )

]−1 B

Then

‖Tβ (s)‖∞ = ‖t(s)‖∞ = ‖BT
Ao [sI − (Ao + I2)]

−1
B‖∞

Lemma 3. The pair (A + β I2 f ,C ), with C = BT A ,
is observable if and only if κ01 6= 0.

Lemma 4. The solution of the algebraic Riccati equa-
tion

(A +β I2 f )
T P+P(A +β I2 f )+ γ2PBB

T P

+C
T
C = 0 (14)

with C = BT A , may be written in the following form

P = bdiag(P,P, . . . ,P)

with P = βBPoB, where B = diag(β ,1) and Po is a
solution of the algebraic Riccati equation (9).

Lemma 5. If ‖t(s)‖∞ < γ−1, there exists the posi-
tive semidefinite stabilizing solution Po of the Riccati
equation (9) and its eigenvalues are larger than 1, i.e.
λi(Po) > 1 ∀i . Moreover if (A + β I2 f ,C ) is observ-
able the solution is positive definite.

Proof of the Theorems: As previously mentioned, the
feature error system (6) can be rearranged, through
a suitable change of coordinates, into f independent
subsystems, whose state matrices are given by (7).
Thus in the following, for the sake of simplicity, the
diagonal system of state vector E =

(
E

T
1 . . . E

T
f
)T ,

with E
T
i = (ξ̃i

˙̃ξi), and state matrices (A ,B) will be
considered.
With the hypotheses of the theorem, from Lemma 1
and 3 it follows that matrix A + β I2 f is Hurwitz and
the pair (A +β I2 f ,C ), with C = BT A , is observable
∀β . These conditions are sufficient (see Lemma 5),
being ‖Tβ (s)‖ < γ−1, to claim the existence of a
positive definite solution P of the algebraic Riccati
equation (14).
Consider the candidate Lyapunov function V (E ) =
E

T PE > 0 ∀E 6= 0. Its time derivative, along the
trajectories of the system, will be

V̇ = E
T (

PA +A
T P−A

T
B∆T

B
T P

−PB∆B
T
A

)
E +2E

T PBd
where d = d1 +d2 and

d1 = −J̇(q, q̇,ξ , ξ̇ ,Z)

[
q̇
Π̇

]

d2 = −JT (q,ξ ,Z)Π̈

Taking into account that P is a solution of (14) yields

V̇ = −E
T (

2βP+ γ2PBB
T P+A

T
BB

T
A

A
T
B∆T

B
T P+PB∆B

T
A

)
E +2E

T PBd

Finally, defining

L1 = E
T ΓΓT

E ≥ 0, ∀E

(

Γ = γPB +
A T B∆T

γ

)

L2 =
(
B

T
A E

)T
(

I f −
∆T ∆
γ2

)
(
B

T
A E

)
≥ 0, ∀E



being ‖∆‖ ≤ γ (and therefore ‖∆‖2/γ2 < 1), and

R = 2βE
T PE D = 2E

T PBd
the time derivative of the Lyapunov function can be
written as

V̇ = −L1 −L2 −R +D (15)

From Lemma 4 it follows that P is a block diagonal
matrix and P = βBPoB. Thus

R = 2β 2
(

ψT
1 ψ1 + · · ·+ψT

f ψ f

)

= 2β 2‖ψ‖2

where ψ i = P
1/2
o BE i and ψ =

(

ψT
1 ψT

2 . . . ψT
f

)T
.

Moreover, for the same reasons, it follows that

D = 2βψT







P
1/2
o B 02,1 . . . 02,1
...

...
...

02,1 02,1 . . . P
1/2
o B







d

≤ 2β‖ψ‖‖P1/2
o B‖‖d‖

Consider now the case d = d1, corresponding to The-
orem 1, and d = d1 +d2, corresponding to Theorem 2,
separately.

Case 1
Taking into account Assumption 4 it follows that

D ≤ 2β
ν

σ 2
m
‖P1/2

o B‖‖ψ‖3

where the following inequality has been used

‖E i‖ ≤ ‖BE i‖ ≤ ‖P1/2
o BE i‖ = ‖ψ i‖ (16)

Applying these bounds to equation (15) yields

V̇ ≤ 2β
σ 2

m
‖P1/2

o B‖‖ψ‖2h(‖ψ‖)

where
h(‖ψ‖) = ν‖ψ‖−σ 2

mβ̃
and β̃ = β/‖P1/2

o B‖.
In order to set V̇ < 0 the following condition must hold

‖ψ‖ < ρ =
σ 2

m

ν
β̃

If this holds, the origin of the state space is an as-
ymptotically stable equilibrium point whose region of
attraction includes, in view of the definition of ψ , the
region (10) of the space (ξ̃ , ˙̃ξ ).

Case 2
Taking into account Assumption 4 and Assumption 5 it
follows that

D ≤ 2β‖P1/2
o B‖‖ψ‖

(
ν

σ 2
m
‖ψ‖2 +σTM χM

)

where inequality (16) has been used.
Applying these bounds to equation (15) yields

V̇ ≤ 2β
σ 2

m
‖P1/2

o B‖‖ψ‖h(‖ψ‖)

where

h(‖ψ‖) = ν‖ψ‖2 −σ 2
mβ̃‖ψ‖+σ 2

mσTM χM

and β̃ = β/‖P1/2
o B‖.

There exists an interval R1 < ‖ψ‖ < R2 on the ‖ψ‖

axis, where R1 and R2 are the roots of the polynomial
h, in which the inequality h(‖ψ‖) < 0 holds, if and
only if condition (11) is satisfied. Furthermore, as V =
‖ψ‖2, the level surfaces of the candidate Lyapunov
function are balls around the origin of the z-space. As
a consequence ∃T > t0 : ‖ψ(t0)‖ < R2 ⇒ ‖ψ(t)‖ <
R1,∀t > T . In fact, as the Lyapunov function decreases
for R1 < ‖ψ‖ < R2, being its time derivative bounded
by a negative definite function of the norm of the state,
every state trajectory starting from a point inside the
ball of radius R2 will approach, in finite time, the inner
ball of radius R1 and will be trapped inside it. Thus, in
view of the definition of ψ , it is easy to conclude that
there exists T > t0 such that

[

ξ̃ (t0)
˙̃ξ (t0)

]

∈ S2 ⇒
[

ξ̃ (t)
˙̃ξ (t)

]

∈ S1,∀t > T

where S1 and S2 are given by (12) and (13), respec-
tively.
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