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Abstract: General closed—form expressions of linear continuous—time system re-
sponses, are derived. The system eigenvalues can be real and/or complex, and
may be repeated. A recursive computationally attractive method is formulated
by which the partial fraction expansion coefficients can be computed fast and
accurately. The closed—form expressions include the numerator coefficients of the
transfer function, a matrix containing the partial fraction expansion coefficients
and the system’s eigenvalues, and a vector containing the independent time—basis
functions. Higher—order responses can easily be computed in closed form from the

impulse response. Copyright (©2005 IFAC

Keywords: Impulse response, partial fraction expansion, closed—form expression,

higher—order response

1. INTRODUCTION

Closed—form transfer function responses for con-
tinuous—time systems are of considerable inter-
est in the area of control systems and filter
design, see, e.g., (Brogan, 1991), (Ogata, 1990)
and (Oppenheim and Willsky, 1997). Closed—form
transfer function responses in (Hauksdéttir, 1996)
have opened up many new interesting applica-
tions, e.g., solving for optimal zero locations
by minimizing transient responses (Hauksdottir,
1996), minimizing the step response deviation
from given reference step responses (Hauksdottir,
19994, 2001, 2002), and approaching the model
reduction problem (Hauksdoéttir, 2000) by mini-
mizing the difference in the impulse response of
the original and the reduced—order model, keeping
a subset of the original eigenvalues and a desired
relative degree. The closed-form expressions are
further used in the direct computation of coeffi-
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cients for PID controllers (Herjolfsson and Hauks-
dottir, 2003) and (Herjolfsson, 2004).

The closed-form expressions are extended in this
paper to include repeated eigenvalues as well as
nonrepeated. The partial fraction expansion coef-
ficients for a unitary numerator transfer function
is treated in Section 2, including an example. The
general partial fraction expansion coefficients are
then treated together with the impulse response
in Section 3 and the earlier example is revisited.
Higher—order responses are finally presented in
Section 4 and conclusions in Section 5.

2. COMPUTATION OF PARTIAL FRACTION
EXPANSION COEFFICIENTS

We assume that the general nth—order differential
equation of the form

y ™) +ary "I + -+ any(t)
= bou'™ (t) + by "V (t) + - + bu(t) (1)

is given. The corresponding transfer function is
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where p;; are the partial fraction expansion coef-
ficients, given by
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Thus, the impulse response is given by

- (3)
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It is assumed that the system has v distinct eigen-
values, —\1, — g, ..., —A,, the eigenvalue —\; be-
ing repeated d; times, ¢ = 1,2,...,v, such that
>-¥_, d; = n. Furthermore it is assumed that the
system is causal, i.e., m < n.

The term basic response refers to the response of
a transfer function containing only poles and a
unity numerator, i.e., the basic impulse response
yu(t) is the solution of

oy () + aryy" V(@) + - ang(t) = 8(1). (5)

Then, by linearity, the total impulse response y;(t)
is given by

yr(t) = boyt™ (8) + biy{" (@) + -+ by (D).
(6)

We can therefore write the basic impulse response
in the Laplace domain as

1
Vi(s) =
b(S) Sn+a15n_1+"'+an
_ 1
(s +/\1)d1 (S+/\2)d2 (s 4+ M)
= 7
ZZ s+)\ @)

11]1

where k;; are the partial fraction expansion coef-
ficients, given by
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Now, it is easy to calculate &4, , i.e., for j = d;,
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Repeating this procedure for j = d; — 2,d; —
3,...,1, it is observed that generally &;; can be
expressed by
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which can be proved by induction, see Appendix
A. Finally, we can write

Kij = Rij(s)] =y, - (14)

2.1 Ezxample 1

Consider the transfer function

G(s) .
S =
(s +1)2(s+2) (s +4)4(s + 7)2’
applying (11) (13) and (14), gives
k11 = —0.00091449, ki2 = 0.00034294,
Kol — 0.00250000,
k31 = — 0.00145748, k32 = — 0.00291495,
k33 = — 0.00308642, k34 = — 0.00617284,
kg1 = — 0.00012803, kg2 = — 0.00006859.

This result agrees with the one obtained by the
int(diff(G(s))) function in Matlab.

3. THE IMPULSE RESPONSE

It is possible to write the basic impulse response
in (9), in vector form
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It can also be written as

yn(t) = Ho&(1), (18)
where
Ho = [hot hoz -+ hoy | (19)
and
Eu(t)
Es(t)
)= . (20)
20

In order to find the total impulse response in (6)
yp(t) and its m differentials must be known. The
first differential is easily obtained from (9)
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which can be expressed in matrix form as

Yp(t) = Z h1i&i(t) (22)

where

hii = [ (=Aikit + Ki2) (=Xikio + Ki3)
(—Niki(a,—1) + Kia,) (=Nikia,) ] - (23)

But now it is possible to calculate the hy; from
hos,

h1; = hosW; (24)
where
=X 0 -+ - 0]
1=\ :
Wi=1 0 1 —x . ' |- (25)
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Thus, y; (t) can be expressed in terms of the same
functions as y,(t), only with different constants.
To calulate y;/(t) the same procedure is repeated,
i.e., by differentiating (21), we get that

hai = h1i Wi, (26)
and in general
hki = h(kfl)iW% k/’ = 1,2,...,’[7’7/. (27)

The total impulse response can thus be written as

yr(t) = BHE(1), (28)

where
B:[bm bmflbO]; (29)

hot ho2 -+ hoy
hii hiz -+ hi
H = . . )

hml hm2 hmv
and £(t) as in (20).

It should be emphasized that (28) is the general
closed—form impulse response for linear continuous—
time systems corresponding to a general transfer
function of the form (2). There are no restrictions,
the eigenvalues can be real and/or complex, re-
peated and/or not and stable and/or unstable.

It should also be noted that

,U:[,Ull cee Midy ot Ml ot uydu}:BH (31)

where 1;; are the coefficients in (2). Thus we have
a new easily computable recursive form of partial
fraction expansion coefficients, given by the well
known expression (3), for a general transfer func-
tion of the form (2).

Further, the new form (28) reduces to an earlier
form in the case of nonrepeated eigenvalues as
published in (Hauksdottir, 1996, 1999a, 19995,
2000, 2001, 2002), (Hauksdottir and Hjaltadottir,
2003) and (Herjolfsson, 2004) (Herjolfsson and
Hauksdottir, 2003). For non-repeated eigenvalues
the elements of H can be expressed explicitly as

(=x) !
[Tomi i (=2 + Ag)

and then the impulse response can be written as

hii =

(32)
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where B is as in (29),
B = [bm —bm—1 -+ (_1)mb0] (34)

and



the Vandermonde matrix. The latter form can be
extended to the case of repeated eigenvalues by
replacing the Vandermonde matrix by an appro-
priate confluent Vandermonde matrix (Bjorck and
Pereyra, 1970). However, the form (28) with the
rows of the matrix (30) being calculated recur-
sively according to (27), is computationally more
efficient.

3.1 Exzample 2

Now, consider the transfer function

35t + 23+ 52 4+25+3
(s +1)2(s+2) (s +4)H (s +T7)*

G(s) =

The r—coefficients were calculated in Ex. 1. The
u—coefficients calculated from (16), (25), (27),
(29), (30) and (31) become

pn11 = —0.004801, w12 =  0.001029,
po1 = 0.087500,

U31 = 0.493570, p32 = — 1.440844,
s — 2175926, jge — — 4.018519,
pa1 = — 0.576269, g0 = — 0.449588.

Which again agrees with int(diff(G(s))).

3.2 Exzample 3

Having computed the p—coefficients as in Ex.
2, it is trivial to calculate the impulse response
from (28). The impulse response is shown in
Figure 1, and compares well to standard results
obtained by numerical integration. Here, however,
no approximations or numerical methods are used,
an accurate result is obtained, fast and efficiently.

4. HIGHER-ORDER RESPONSES

We can calculate the step response, yg(t) at time
t > 0, by simply integrating the impulse response.
Using the fact that (see any standard mathematics
handbook)
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Fig. 1. Impulse response for transfer function in

Example 2.
t
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Note that V; is the inverse of the matrix W; in
(25). The step response is thus

ys(t) = /O " BHE()n

= BHV (£(t) — £(0))
b

=BHVE(t) + a—m (39)
where
Vi o -0
v=| 0" (40)
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The ramp response is found by integrating the
step response

yn(t) = /O t (BHVS(tl) + Z—m) ity

n
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an
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Higher—order responses can easily be obtained in
a similar manner as

y (1) = BHVE(1) (v — 1)!

fBHZW:Vpg(O) EV - 1):ﬂ—p. (42)

p=1



5. CONCLUSION

The closed—form expressions of transfer function
responses derived in (Hauksdottir, 1996) were
extended in this paper to include the case of
repeated eigenvalues, see also (Hauksdéttir and
Hjaltadottir, 2003) and (Herjolfsson, 2004) for
earlier versions. Further, a recursive, computa-
tionally efficient equation for partial fraction ex-
pansion coefficients was developed. The closed—
form expressions derived include the numerator
coefficients of the transfer function, a matrix con-
taining the partial fraction expansion coefficients
and eigenvalues, and finally a vector containing
the independent time—basis functions. Several ex-
amples were presented illustrating the proposed
method. First, the partial fraction expansion co-
efficients for a unitary numerator transfer function
were computed, and then that result was extended
for a polynomial numerator. Finally, the corre-
sponding impulse response was computed based
on the partial fraction expansion coefficients and
the linearly independent basis functions.

It should be emphasized, that the expressions
derived are a new general closed—form solution
for linear continuous—time system responses cor-
responding to a general transfer function. The
system eigenvalues can be real and/or complex,
and may be repeated. Further, the recursive form
of partial fraction expansion coefficients for a
general transfer function is also new and easily
computable.

Software simulation tools for linear systems, in
general rely on algorithms involving numerical
integration, in order to simulate linear system
responses. By using the new closed—form solution,
linear system responses may be computed effec-
tively, without iterations or approximations, as
well as for computation of various system char-
acteristics and controllers. Thus, the results of
this paper could have an impact for software de-
velopement involving system simulation, various
system analysis and computation of controllers.
Being general solutions of ordinary differential
equations, the results may also effect different
areas of engineering and science.
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Appendix A. PROOF OF EQUATION (13)
First, we notice that for j = d; — 1, (13) is true.

Now, we suppose that (13) is satisfied for j = d; —
k and calculate for j =d; — (k + 1),

1 dk+1
(k+1)! dsF+1 {(S )

1 d (14" Yy(s)
= [ == A d;
k+1ds (k! sk [(H ) U(s)}
1 d .
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Substituting (13) we get
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Differentiating (13) with respect to s and setting
7 =d; — k, we get
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Then expanding the first term and separating the
first subterm from it, and expanding the second
term and seperating the last subterm, gives
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Now increasing the index of the third term by one,
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Combining the second term and the third term
gives
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Now write all of this as one sum

1 k+1
Ri(di—(k+1)) (8) = 77 D Ritd— k)4 ()
q=1
~ d
WIS SR
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Now we have shown that &;;(s) can be expressed
with (11) for j = d; and (13) for j = (d; —1), (d; —
2),...,L
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