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Abstract: In this paper a new Back-propagation algorithm appropriately studied
for modelling air pollution time series is proposed. The underlying idea is that
of modifying the error definition in order to improve the capability of the model
to forecast episodes of poor air quality. In the paper five different expressions of
error definition are proposed and their performances are rigorously evaluated in the
framework of a real case study which refer to the modelling of 1 hour average daily
maximum Ozone concentration recorded in the industrial area of Melilli (Siracusa,
Italy). Results indicate that despite the traditional and the proposed version of
Back-propagation performs quite similarly in terms of Success Index which gives a
cumulative evaluation of the model, this latter algorithm performs better in terms
of the percentage of exceedences correctly forecast.
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1. INTRODUCTION

Non linear regression techniques based on Mul-
tilayer Perceptron (MLP) neural networks have
drawn the attention of several scientists involved
in the stochastic modelling of pollutant time series
(Arena et al., 1996), (Gardner and Dorling, 1998),
(Kolhmainen et al., 2001), (Chelani et al., 2002a).
Several authors have shown that MLP works bet-
ter than traditional linear regression techniques
(Finzi et al., 1998), (Nunnari et al., 1998), (Volta
et al., 1998) and also many other non-linear tech-
niques as short-term predictors of pollutant con-
centrations at a point (Chelani et al., 2002b),
(Schlink et al., 2003), (Dorling et al., 2003).
The Backpropagation algorithm (Rumelhart et
al., 1986), which is the basic approach to training
a supervised Multilayer Perceptron (MLP) neural
network, is based on the minimisation of the tradi-

tional average squared error cost function defined
as follows

J0 =
1

2N

N∑
p=1

Ep =
1

2N

N∑
p=1

(Yp − Tp)2 (1)

In (1) Tp and Yp represent the target and actual
model output value respectively. However, it is
easy to understand that this assumption is not
the most appropriate when dealing with pollution
time series containing a relatively small number of
episodes of poor air quality, as shown for instance
in Table 1. This table shows the exceedances of
the attention level (180 µg/m3) of the 1 hour
average of the daily maximum (DMAX) ozone
concentration, recorded during 1995-1999 at the
station referred to as Melilli (Siracusa, Italy), (see
Fig. 1)



Fig. 1. The air pollution recording network in the
industrial area of Siracusa
Table 1. Frequency of exceedances of
the 1 hour average daily maximum
Ozone concentration during 1995-1999
(attention level threshold 180 µg/m3)

Station/Year 1995 1996 1997 1998 1999

Melilli 32 25 29 32 46

It is possible to see, for example, that the
DMAX time series recorded at Melilli during 1996
presents 25 episodes exceeding the threshold of
180 µg/m3 while the remaining 340 episodes fall
below the threshold. The drawback that arises
considering the cost function (1) in a similar case
is due to the fact that no difference is made be-
tween targets above or below a given threshold.
Hence the learning algorithm will give the 25 ex-
ceeding episodes the same weight as the remaining
340 events. The immediate consequence is that
although one of the main targets of the models
is the prediction of episodes of poor air quality,
these events may not be relevant during the model
identification process. The idea underlying this
work is to modifying expression (1) in order to
weight exceeding events more appropriately.

2. MODIFIED COST FUNCTIONS

In this paper five different cost functions (i.e. error
definitions) are considered, as expressed in (2) to
(6) respectively

J1 =

∑N
p=1 (Tp − Yp)2(Tp − M)2

2N
(2)
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p=1 (Tp − Yp)2[(Tp − M)2 + (Yp − M)2]
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(4)

J4 =

∑N
p=1 e−(Yp−T )(Tp−T )(Tp−Yp)2

N
(5)
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2N
Tp > T

(6)

In expressions (2) and (3) M is a constant value
and T is the threshold (e.g. 180 µg/m3 for ozone
daily maximum concentration). The reason for
choosing these expressions is the following. Let us
assume M to coincide with the average value of
the pollutant time series, i.e.

M =
1
N

N∑
p=1

Tp (7)

In this case the term (Tp−M)2 can be considered
as a weight that emphasize the importance of
extreme values (i.e. values other than M), such
as the exceedances that the model aims to detect.
The additive term (Y p − M)2 in expression (3)
will drive the model output towards the average
values M and hence can be represented as a way to
balance the effect of the term (Tp−M)2. In J3 the
mean square error (MSE) is weighted according to
an exponential factor. The exponential is greater
than 1 when the target and the output of the
network are contradictory, i.e. when the target ex-
ceedes the threshold T and the network output Yp

is below the threshold (or viceversa). In such a way
the discordant cases between the real process and
the model are penalized. The same mechanism is
at the base of the other two cost functions. In
J4 the effect of penalizing the discordant cases
is emphatized by putting the square error into
the exponential function. In J5 error definition
takes into account if the values of the target is
below or above the threshold. In the latter case
the MSE is double weighted with respect to the
former case; this gives more emphasis to episodes
of poor air quality (exceedences). The properties
of the considered cost functions will be illustrated
below by a case study, while formulas obtained
for the modified backpropagation algorithm are
given in the next section. Below we will refer to
the traditional back propagation, i.e. the training
algorithm based on minimisation of cost function
(1) as BP while we will indicate the algorithms
corresponding to cost functions (2) to (6) as BP1
to BP5 respectively.

3. THE IMPROVED BACKPROPAGATION
ALGORITHM

As is known the Backpropagation algorithm is
a recursive algorithm to update the weights of
Multilayer Perceptron (MLP) neural networks,
based on the deepest-descent formula:



∆wp
ij = −ε

∂Ep

∂wp
ij

= −εδ
(S)
i,p O

(S−1)
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where ε and wij are the learning velocity and the
weight of the interconnections between the i-th
neuron of the layer S − 1 and the j-th neuron
of the layer S. δ

(S)
i,p is the local gradient of the

i-th neuron in the layer (S) and O
(S−1)
j,p is the

output of the j-th neuron in the layer (S−1). The
local gradient can be computed using different
expressions depending on the different type of
layer considered. In more detail for a neuron in
the output layer (S = n) when considering the
traditional BP we have the expression (9)

δ
(n)
i,p = (Tp − Yp)ḟ(NET

(n)
i,p ) (9)

while for a neuron belonging to one hidden layer
we have

δ
(S)
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(S)
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rp

wp
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(10)

In expressions (9) and (10) f is the activation
function, ḟ is the corrisponding first derivative
and NET

(S)
i,p and O

(S)
j,p are defined as following:

NET
(S)
i,p =

∑
j

wp
i,jO

S−1
j,p (11)

O
(S)
j,p = f(NET

(S)
i,p ) (12)

In view of implementing modified versions of the
BP algorithm we observe that expression (10) is
independent on the particular definition of the
cost function. Thus adopting different definition
for Ep will affect δ

(n)
i,p only, i.e. for the neuron of

the output layer. We have computed δ
(n)
i,p for the

five different cost functions given in (2) to (6) and
the results are listed below.

Cost function J1:

δ
(n)
i,p = (Tp − Yp)(Tp − M)2ḟ(Netpi ) (13)

Cost function J2:

δ
(n)
i,p = (Tp − Yp)[(Tp − M)2 + (Yp − M)2 −

−(Tp − Yp)(Yp − M)]ḟ(Netpi ) (14)

Cost function J3:

δ
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T −1)[2 −

− (Tp − Yp)(Tp − T )
T 2
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Cost function J4:

δ
(n)
i,p = e−(Yp−T )(Tp−T )(Tp−Yp)2(Tp − T )

(Tp − Yp)[2(Yp − T ) − (Tp − Yp)]ḟ(Netpi ) (16)

Cost function J5:

δ
(n)
i,p =

{
(Tp − Yp)ḟ(Netpi ) Tp < T

2(Tp − Yp)ḟ(Netpi ) Tp > T
(17)

4. MODELLING DAILY MAXIMUM OZONE
CONCENTRATIONS AT MELILLI (SR)

The backpropagation algorithm proposed in this
paper was considered to model 1 hour average
daily maximum concentrations (DMAX) of Ozone
(O3) recorded at various recording stations lo-
cated in the industrial area of Siracusa (Italy). In
particular we show some results concerning the
station referred to as Melilli. The structure of
the prediction model considered is given by the
following expression:

O3MAX (t + 1) = F (O3Mean[16−20](t),

, T empMAX[1−20](t),

, WSMean[9−16](t)) (18)

Here t represents the current day, O3MAX (t + 1)
represents the daily maximum concentration of
Ozone on day (t+1), O3Mean[16−20](t) represents
the average concentration of Ozone between 4
p.m. and 8 p.m. on day t, TempMAX[1−20](t) rep-
resents the max temperature on day t computed
between 1 a.m. and 8 p.m., WSMean[9−16](t) rep-
resents the mean wind speed computed between
9 a.m. and 4 p.m. at time t, and, finally, F is a
non linear unknown function to be approximated.
The prediction model structure shown in (18) was
obtained by using a trial and error approach. Fig.
2 shows the one hour average daily maximum
concentration of Ozone recorded at the Melilli
station during the time period (1995-1998). Model
identification was performed considering recorded
data deprived of 365 consecutive values (a one
year set of data) that were used as test set. To
compare the different algorithms 10 trials have
been carried out changing the test set. The process
being modelled was assumed to be stationary dur-
ing the time interval considered.

4.1 Performance Indices

In order to evaluate the capabilities of the training
algorithms to predict exceedances of the attention
level the indices defined in (19)-(25) were com-
puted.

SP =
Np

No
(19)



Fig. 2. 1-hour average daily maximum concentra-
tion of Ozone recorded during 1995-1998

SR =
Np

NF
(20)

FA = 1 − SR (21)

SI = (
Np

No
+

N + Np − No − NF

N − No
− 1) (22)

In expressions (19)-(25) No is the total number
of observed exceedances of a given threshold, Np

is the number of correctly predicted exceedances,
Nf is the total number of forecast exceedances and
N the total number of data points. The meaning
of the indices defined above is the following. SP
indicates the percentage of exceedances correctly
forecast, FA is the percentage of false alarms,
SR gives the percentage of predicted exceedances
which actually occurred and, finally, SI is the
success index which gives a cumulative evalua-
tion of how well the exceedances are predicted.
Details about the measuring of the mentionated
performance indices can be found in (Aalst and
Leeuw, 1997).

PI = (1 − No + Nf − 2Np

N
) (23)

PI = P (O, Y ) + P (O, Y ) (24)

Unfortunately the SI index does not express
a probability of success in strictly probabilistic
sense. To overcome this drawback we propose here
a new index referred to as PI (Probability Index)
expressed by (23). It is easy to demonstrate that
PI can also represented as indicated by (24).
The right term of expression (24) represents the
sum of two probabilities: P (O, Y ) which gives the
probability that an observed exceedance will be
correctly predicted by the model and P (O, Y )
which represents the probability that non exceed-
ing values will also correctly forecast. In (24) the
argument O represents a boolean variable defined
as following:

O =

⎧⎪⎪⎨
⎪⎪⎩

True when the pollutant time series to
be modelled exibits an
exceedance (e.g. O3MAX > T )

False otherwise

O = notO

The arguments Y and Y have the same meaning
of O and O but refer to the estimated values (i.e.
the output of the prediction model). Furthermore
in this paper we introduce another new index,
referred to as GI (Global Index) expressed by
(25) which gives a measure of the success of the
forecasting model independent on the number N
of samples in the modelled time series.

GI = (
Np

No + Nf − Np
) (25)

It is to be stressed that both PI and GI assume
values in the [0, 1] interval. For a good prediction
model PI and GI should approach to 1.

4.2 Experimental Framework

To evaluate the peculiarities of adopting the mod-
ified cost functions (2) to (6) in comparison with
the traditional MSE given in (1), a software tool
was coded which implements the modified back
propagation algorithms as described in the previ-
ous section. All these algorithms were considered
to train the NARX model given in (18). In order to
obtain a measure of the generalization capabilities
not affected by a particular training and testing
set, the learning phase was organized as follows.
The available data set spanning for 1995 to 1998
was divided in ten overlapping data sets, each
containing one year data (i.e. 365 samples of daily
maximum ozone concentration). For each back-
propagation algorithm ten different trials were
performed. During each trial 9 of the 10 data set
were considered for the training and the remaining
one for the test. This should guarantee a non
biased evaluation of the performance (i.e. the set
of indices is representative of the generalization
capabilities of the neural model). During all the
experiments the number of learning cycles, hidden
neurons (in the unique hidden layer considered)
and the learning velocity were considered con-
stant in order to assure a more objective inter-
comparison exercise. In particular the number of
hidden neurons was set to 6, the learning velocity
ε to 0.1 and the number of learning cycles was set
to 10000. Results are reported for the six differ-
ent algorithms in Table 2 to 7. Each table gives
the performance indices for the ten trials carried
out by using a given algorithm. Furthermore the
averaged values of the performance indices are
summarized in Fig. 3 and 4. In particular Fig. 3



gives the SP, FA and SI indices and Fig. 4 the in-
troduced set of indices (PI and GI). From Fig. 3

Table 2. Performance of models
obtained using the traditional BP (cost

function J0)

SP% SR% FA% SI% PI% GI% No

47.8 63.5 36.5 40.2 82.8 37.5 69
67.5 78.3 21.7 61.2 87.1 56.8 80
70.8 78.0 22.0 65.7 90.0 59.0 65
67.2 77.6 22.4 62.0 89.0 56.3 67
70.8 67.1 32.9 60.7 85.6 52.6 2
52.8 63.3 36.7 43.9 82.4 40.4 72
55.1 64.4 35.6 46.7 83.7 42.2 69
54.7 66.0 34.0 47.6 85.3 42.7 64
57.1 69.0 31.0 49.9 85.0 45.5 70
62.3 67.6 32.4 52.8 83.7 48.0 77

Table 3. Performance of models
obtained by using the BP1 (cost

function J1)

SP% SR% FA% SI% PI% GI% No

85.5 38.8 61.2 48.3 67.7 36.4 69
95.0 46.3 53.7 58.2 71.2 45.2 80
90.8 42.4 57.6 59.3 73.0 40.7 65
88.1 43.7 56.3 57.9 73.7 41.3 67
88.9 44.1 55.9 56.1 72.1 41.8 72
86.1 40.8 59.2 49.7 68.7 38.3 72
89.9 40.0 60.0 52.7 68.7 38.3 69
96.9 40.3 59.7 60.8 70.5 39.7 64
92.9 43.3 56.7 58.7 71.8 41.9 70
92.2 44.4 55.6 55.4 70.2 42.8 77

Table 4. Performance of models
obtained by using the BP2 (cost

function J2)

SP% SR% FA% SI% PI% GI% No

68.1 53.4 46.6 51.7 80.3 42.7 69
82.5 59.5 40.5 63.7 81.5 52.8 80
83.1 54.0 46.0 65.0 82.1 48.6 65
79.1 55.2 44.8 62.0 82.1 48.2 67
84.7 55.5 44.5 64.9 81.2 50.4 72
75.0 52.9 47.1 55.6 79.3 45.0 72
75.4 52.5 47.5 56.6 79.9 44.8 69
79.7 56.0 44.0 64.0 83.4 49.0 64
77.1 60.0 40.0 62.7 83.7 50.9 70
77.9 57.7 42.3 59.7 80.9 49.6 77

it appears that all the modified back-propagation
algorithms (except BP3) perform better than the
traditional BP in terms of SP and SI. In particular
SP is about 0.60 for BP, 0.90 for BP1, 0.78 for
BP2, 0.84 for BP4 and 0.70 for BP5. However this
result is accompanied by a larger number of false
alarms. This agrees with the fact that the PI and
the GI are almost constant for all the considered
algorithms. In other words the proposed back-
propagation algorithms do not perform globally
better than the traditional BP but if the modeller

Table 5. Performance of models
obtained by using the BP3 (cost

function J3)

SP% SR% FA% SI% PI% GI% No

44.9 62.8 38.0 37.3 82.1 35.2 69
67.5 79.4 20.6 61.6 87.5 57.4 80
66.2 84.3 15.7 63.0 90.6 58.9 65
62.7 85.7 14.3 59.9 90.0 56.8 67
66.7 73.8 26.2 59.8 87.1 53.9 72
50.0 67.9 32.1 43.1 83.4 40.4 72
52.2 67.9 32.1 45.4 84.3 41.9 69
48.4 73.8 26.2 44.1 86.2 41.3 64
57.1 78.4 21.6 52.7 87.1 49.4 70
54.5 75.0 25.0 48.8 84.6 46.2 77

Table 6. Performance of models
obtained by using the BP4 (cost

function J4)

SP% SR% FA% SI% PI% GI% No

71.0 50.5 49.5 51.8 78.7 41.9 69
87.5 58.3 41.7 66.6 81.2 53.8 80
84.6 52.9 47.1 65.3 81.5 48.2 65
80.6 53.4 47.6 61.2 80.6 46.6 67
84.7 55.0 45.0 64.5 80.9 50.0 72
86.1 53.7 56.3 53.7 71.8 40.8 72
82.6 50.0 50.0 59.8 78.4 45.2 69
95.3 43.3 56.7 63.9 74.0 42.4 64
84.3 58.4 41.6 67.4 83.4 52.7 70
85.7 55.5 44.5 63.8 79.9 50.8 77

Table 7. Performance of models
obtained by using the BP5 (cost

function J5)

SP% SR% FA% SI% PI% GI% No

59.4 57.7 42.3 47.4 81.8 41.4 69

71.3 67.1 32.9 59.5 84.0 52.8 80
73.8 61.5 38.5 62.0 85.3 50.5 65
70.1 61.8 38.2 58.6 84.6 49.0 67
76.4 58.5 41.5 60.6 82.4 49.5 72
65.3 52.8 47.2 48.3 79.0 41.2 72
69.6 53.3 46.7 52.8 80.3 43.2 69
67.2 58.1 41.9 55.0 83.7 45.3 64
72.9 60.7 39.3 59.6 83.7 49.5 70
75.3 61.7 38.3 60.4 82.8 51.3 77

is interested in maximizing the performance in
terms of percentage of exceedances correctly fore-
casted it is quite evident that a benefit can be ob-
tained adopting one of the introduced algorithms.
The price to pay is an increasing level of false
alarms which is usually acceptable provided that
it is lower than a prefixed threshold (say 0.40).
Fig. 3 shows that BP5, among the inter-compared
algorithms, is the best compromise between a high
level of SP (0.70) and an acceptable level of FA
(0.40) whilst the traditional BP exhibits SP =
0.60 and FA = 0.30. It is interesting to stress
here that the choice of BP5 is also confirmed by
the following reasoning carried out in terms of PI



Fig. 3. Comparison among all proposed algo-
rithms in terms of SP, FA, SI.

Fig. 4. Comparison among all proposed algo-
rithms in terms of PI and GI.

and SP . Indeed Fig. 4 shows that the best three
models in terms of PI are BP (PI = 0.854), BP3
(PI = 0.863) and BP5 (PI = 0.827) since they
exhibit almost the same value. However BP5 is
the best with respect BP and BP3 in terms of
SP . Hence we may suggest this criterion to make
the choice among various air quality prediction
models.

5. CONCLUSIONS

In this paper a novel backpropagation algorithm
to improve the capabilities of the traditional back-
propagation algorithm to predict episodes of poor
air quality has been proposed. The rigorous in-
tercomparison, performed in the framework of
the described case study show that despite the
traditional and the proposed algorithms perform
quite similarly in terms of success index and global
index, this latter algorithms performs better in
terms of the percentage of exceedences correctly
forecast. The price to pay for this is a limited
increasing in the percentage of false alarms.
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