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Abstract: This paper presents an analysis of classical and modern control methods for 
blood glucose control of diabetic patients under intensive care. Employing a modified 
two- compartment model proposed by Bergman, et al. (1979), linear feedback control 
law leads to a fully symbolic solution. In case of nonlinear approach, considering 
glucose injection as the only control variable and using Pontryagin's maximum 
principle, a symbolic-numeric solution has been achieved. As modern control strategy, 
optimal glucose-insulin control in the H2/H∞-space is presented using LQ and 
disturbance rejection LQ methods, which result in a numerical solution to the control 
problem. Copyright © 2005 IFAC. 

 
Keywords: diabetes mellitus, disturbance rejection method, glucose-insulin control, 
H2/H∞ control, minimax control, nonlinear control, Pontryagin's maximum principle, 
symbolic computation. 

 
 
 

 
1. INTRODUCTION 

 
From an engineering point of view, the treatment of 
diabetes mellitus can be represented by an outer 
control loop, to replace the partially or totally 
deficient blood-glucose-control system of the human 
body. The maintenance of the glucose level in a 
diabetic patient under intensive care is currently an 
actively researched topic in the field of Biomedical 
Engineering. To design an appropriate control, an 
adequate model is necessary. In the last 50 years, a 
variety of models for the interaction between glucose 
and insulin have been suggested in the literature such 
as Tolic, et al. (2000), Benett and Gourley (2003) 
and strategies have been designed and applied to the 
problem (Fischer and Teo, 1989; Juhász and 

Asztalos, 1996; Sano, 1986; Benyó et al., 1998). 
Most of the models were realized for an “artificial 
pancreas” function, in conditions, where the patient 
blood glucose level monitoring and insulin injection 
were performed continuously (i.e. surgery) (Fischer 
and Teo, 1989; Sano, 1986). 
 
The model selected for the control design should not 
be too complicated, however it should still describe 
properly the characteristics of the physiological 
system to be controlled. Therefore, comparing the 
models mentioned above (Juhász, 1993), the authors 
orientated on Benyó, et al. (2003) and considered a 
modified two compartment model (Bergman et al., 
1979), the so called minimal model, as the most 
appropriate model. 



Symbolic computation was used to design a linear 
and nonlinear multivariable control, based on the 
state-space representation of this selected model. In 
this way the designed control strategy can be 
evaluated rapidly, and can be applied in on-line (real 
time) applications. 
 
Furthermore, optimal glucose-insulin control 
strategies in H2/H∞-space - LQ, minimax 
(disturbance rejection LQ) control - have been 
designed for diabetic patients. Using these control 
strategies the simulations of the dynamical 
performance of the non-linear closed loop system in 
case of food (sugar) intake has been carried out. For 
computations Mathematica v.5.1 with its Control 
System Professional Suite 2 (CSPS2) Application, 
and Matlab v.6.5 have been used. 
 
 

2. MODEL EQUATIONS 
 
To simulate the insulin-glucose interaction in human 
body the following two-compartment model was 
employed (Benyó et al., 1998; Benyó et al., 2003): 
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The terms h(t) and i(t) are the exogenous insulin and 
glucose inlets, X1(t) and X2(t) stand for the 
concentration of glucose in the plasma and for the 
concentration of the insulin remote from plasma. In 
our case X1(t) and X2(t) represent both the states and 
the output of the system, as the dynamical 
performances of the measurement and actuator 
devices are considerably faster than that of the 
system itself. 
 
The nonlinear system was linearized in the vicinity 
of steady state (Kovács and Paláncz, 2004), namely 
at (X1st, X2st, hst, ist). The obtained linear model is: 
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where x(t) represents the state, u(t) and y(t) are the 
input and output relative variables. While the rank of 
the controllability matrix is equal with the rank of the 
system, the system can be stabilized (Kovács et al, 
2004). 
 

3. LINEAR APPROACH OF THE GLUCOSE-
INSULIN CONTROL 

 
Firstly, the control can be solved by the classical 
state feedback method. Considering λ1, λ2 the 
eigenvalues of the matrix A-KB, the gain matrix, K 
can be computed in symbolic form, (Kovács and 
Paláncz, 2004): 
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Consequently, for model (1) the designed control can 
be implemented, resulting the closed loop: 
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It can be seen, that the closed loop system is 
decoupled, while each output is dependant only on 
the corresponding input. 
 
 
3.1 Simulation of the Linearized Closed Loop Model 
 
As disturbance, let us perturbate the initial conditions 
x1 = ∆X1 = X1(0) – X1st  > 0 and x2 = ∆X2 = X2st – 
X2(0)  > 0. The system response can be given in 
symbolic form, i.e. choosing λ1 = p1 and λ2 = p3: 
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This is a feasible control, because both of the model 
parameters p1 and p3 are negative, (Juhász, 1993). 
 
 
3.2 Nonlinear Closed Loop Model 
 
In order to simulate the dynamical behavior of the 
nonlinear model, the control law, (3) based on the 
linearized system is substituted in equation (1). 
While the first equation is independent from the 
second one, it can be solved as a single equation. 
Substituting the obtained result into the second 
equation, the solution can be also achieved in 
symbolic form: 
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To finish the analysis, a hypoglykaemic episode was 
taken into consideration with the following 
numerical values: 
 

0.077947  p4
0.014188-  p3

0.092551  p2
0.021151-  p1

=
=
=
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Consider as initial values X1(0) = 0.1 and X2(0) = 2, 
now the eigenvalues are selected as: 11 0.7p  =λ ; 

32 1.05p  =λ . 
 
 

4. NON-LINEAR APPROACH OF THE 
GLUCOSE-INSULIN CONTROL 

 
4.1 Model Reduction and Objective Function 
 
Assuming that we do not use glucose injection, 
namely h(t) ≡ 0 - which is a very reasonable 
assumption, because the reference value of the 
glucose concentration is zero - and the only control 
variable is the insulin inlet, the first equation of 
model (1) can be reduced as: 
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This state variable X1(t) is exponentially decreasing 
towards the steady state, because in our model the 
parameter p1 < 0. Substituting this result into the 
second equation we get a single linear, but 
nonautonom equation as system equation: 
 

 (t)X p3) + (0)X (-e + p4 + i(t) =(t)X 21
tp

2 1&  (9) 
 
The kernel of our objective function represents the 
deviation of the actual state from the steady state and 
the consumed insulin of the process during the return 
from the steady-state point: 
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where α1 and β1 are weighting parameters. Therefore, 
the objective function to be minimized is: 
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where θ is the termination time of the control. 
 
Using Pontryagin's Maximum Principle (PMP), the 
Hamiltonian of the problem involving the system 
equation (9) as a constraint, in form of Lagrangian 
multiplier is: 
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Pontryagin's maximum principle states that we 
should select an i(t) control function, which will in 
our case minimize the Hamiltonian: 
 

2 i(t)β1 + λ1(t)= 0 .      (13) 
 
This equation ensures that the stationary point is 
minimum, if β1 > 0. 

4.2 Solution of the split boundary problem 
 
The steady state of the system can be easily 
computed, (Kovács and Paláncz, 2004), obtaining 
X1st = 0,  5.49387 

p
pX
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4
st2 =−= . The adjoint function 

can be than also easily written using λ1(θ) = 0, X1(0) 
= 0.1, X2(0)= 2 as a split boundary condition 
problem. 
 
This is a nonautonom, but linear system, with split 
boundary values, because of the substitution of i(t) in 
(9). We get: 
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Considering Ө = 300 min. and the same numerical 
values as in (7), the system can be solved once again 
numerically using the CSPS of Mathematica. The 
boundary conditions are satisfied fairly well (X2(0) = 
2.01953, λ1(300) = 0) and the steady state is also 
nearly reached: 
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4.3 Simulation results 
 
For the numerical values considered in both control 
cases, the simulations point out the differences 
between the two control strategies: linear and 
nonlinear approach of the glucose-insulin control. 
The presented situation belongs to the case of 
starting from a non-equilibrium point. 
 
In case of the nonlinear approach using Pontryagin's 
maximum principle, the glucose concentration is 
stabilized faster (Fig.1), while the insulin 
concentration reaches the steady state value slower 
(Fig.2). Due to the fact, that the priority of the 
control is the stabilization of the glucose 
concentration, one can tell that the nonlinear 
approach using Pontryagin’s maximum principle 
gives a better result. However, it must be mentioned 
that only one trajectory of the linear and nonlinear 
control has been compared here. 
 
This conclusion is also demonstrated by Kovács and 
Paláncz (2004), by the evolution of the input signals. 
In case of a nonlinear approach, the variation of the 
exogenous insulin input is smoother than in case of 
linear approach. However, it must be taken into 
consideration that the glucose injection was 
considered zero using Pontryagin’s maximum 
principle, but this is not a big constraint, while 
physiologically speaking we inject only insulin. 
 



5. DESIGN OF OPTIMAL GLUCOSE-INSULIN 
CONTROL 

 
5.1 LQ and Disturbance Rejection LQ (Minimax) 

Control 
 
Using the general form of a dynamic LTI (linear time 
invariant) system, (Zhou, 1996), in case of a classical 
LQ control (Bokor, 2003), the requirement is to 
minimize the following quadratic cost functional: 
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The classical LQ attempts to find an optimal control 
u*(t), ],0[t ∞∈ , based on the CARE (Control 
Algebraic Ricatti Equation) for all u(t) on ],0[t ∞∈ . 
The task is to choose adequate Q and R matrices. 
 
The disturbance rejection LQ method represents a 
generalization of the classical LQ problem (Zhou, 
1996; Bokor, 2003) and is based on the minimax 
criteria. The system dynamics is generally described 
as before, but now the input variable u(t) is separated 
in control input )t(u and disturbance d(t), which can 
be considered as unmeasurable: 
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Therefore, in this situation the quadratic cost 
functional will be explicitly modified with the 
disturbance: 
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Now, the disturbance - while it appears with a 
negative sign - attempts to maximize the cost, while 
we want to find a control )t(u  that minimizes the 
maximum cost achievable by the disturbance (by the 
worst case disturbance). This is a case of so called 
“worst-case” design and leads to the formulation of a 
differential-game (Bokor, 2003): 
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)t(u , d(t) satisfying the state equation. It was 

demonstrated (Zhou, 1996; Bokor, 2003) that the 
solution of the differential-game (19) exists, it is 
unique and satisfies the saddle point condition. 
 
According to Bokor (2003), the optimal control and 
the worst-case disturbance are given by: 
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Fig. 1. Variation of the glucose concentration (output 

X1(t)) in case of linear and nonlinear approach of 
glucose-insulin control. 

 

 
 
Fig. 2. Variation of the insulin concentration (output 

X2(t)) in case of linear and nonlinear approach 
of glucose-insulin control. 

 
 
where P is the positive definite symmetric solution of 
the modified control algebraic Ricatti equation 
(MCARE): 
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5.2 LQ and Minimax Control Design 
 
The LQ design is applied to the same model (2) and 
numerical values (7). The physiological 
interpretation of (16) is to optimize the output of the 
system, by minimizing the control input (energy / 
insulin). The first component of u(t) states for 
disturbance, consequently, R11 should be 
considerably greater than R22: 
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As a result, the eigenvalues of the closed loop system 
(EigLQ) and the LQ gain (KLQ) can be determined 
by solving the normal control algebraic Ricatti 
equation (CARE): 
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One can see that the first row of KLQ is zero 
meaning that the first component is eliminated from 
control. In case of minimax control, first the optimal 
γ (γmin) has been calculated by iteration, using the 
Control- and µ-Toolbox of MATLAB. To prove that 
the best disturbance rejection is reached for γmin, the 
minimax control problem of the glucose-insulin 
control was tested for three different situations, 
namely: γ = {γmin, 2 γmin, 100 γmin}. The resulted 
solutions of the obtained eigenvalues and minimax 
control gains are given in Table 1. The same results 
were achieved by solving the MCARE equation in 
symbolic way via Mathematica (Paláncz and Kovács, 
2004). 
 
One can see that the LQ gain is very similar to the 
case of the minimax control for γ = 100 γmin. The 
obtained result demonstrates the theory, that for great 
values of γ, the minimax control solution becomes a 
classical LQ control. 
 
 
5.3 Simulation results 
 
To test our controllers via simulation, we considered 
the situation of food intake (disturbance), simulating 
the sugar absorption in the body. According to our 
clinical experiments we used the following function 
for input (for a duration of 20 minutes): 
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To illustrate the control action, first the simulation 
was carried out without control (Fig.3, Fig.4). A 
considerable drop in the insulin remote from the 
plasma can be seen, which indicates the necessity of 
control (Fig.3). Using the classical LQ (with the 
given R and Q matrices), the decrease of the insulin 
concentration is now very small (Fig.5). 
 
In case of minimax control, results are presented in 
Fig.5, Fig.6, demonstrating the numerical results 
obtained for different γ’s in Table 1. 
 
It can be seen from the history of the insulin 
concentration, the insulin input control signal and the 
glucose concentration that the minimax control gives 
the best result for γmin. In addition, increasing values 
of γ approaches the performance of the classical LQ. 
 

Table 1. The minimax control gains and the 
eigenvalues of the closed loop system for different γ. 

 
γ KLQmm Eig LQmm 

0.2284 -0.00083 
γmin -5.4159 0.9861 

-1.00031 
-0.02115 

0.03059 -0.000206 
2 γmin -5.3185 0.9859 

-1.00015 
-0.02115 

1.0×10e-5 -8.2×10e-8 
100 γmin -5.3037 0.98591 

-1.0001 
-0.02115 

 
 
Fig. 3. Variation of insulin remote from plasma 

without control. 
 

 
 
Fig. 4. Variation of glucose in plasma without 

control. 
 

 
 
Fig. 5. Variation of insulin concentration in case of 

LQ and minimax control. 
 

 
 
Fig. 6. Variation of glucose in plasma with LQ and 

minimax control. 
 
Using these LQ and minimax control strategies, the 
dynamical performance of the non-linear closed loop 
system has been carried out for a food (sugar) intake. 



6. CONCLUSIONS 
 
The main advantage of the selected model from the 
control point of view, in comparison with the other 
mentioned models is, that it is on-line adaptive, 
based on strong theoretical foundations as well as 
describing the physiological system appropriately. 
However, in the literature there are some articles 
dealing with more sophisticated models of glucose-
insulin interaction, but they have not been applied to 
control problems (Benett and Gourley, 2003; 
Mukhopadhyay et al., 2004). Until now, the existing 
adaptive control models worked in a flip-flop 
manner, selecting the control command between two 
values, but they have neither physiological nor 
control theoretical background. Nowadays scientists 
are trying to obtain on-line adaptive control laws 
using compartment analysis, but results are still in an 
initial phase (Baura, 2002). 
 
Although, in case of linear approach the control 
design was based on the linearized model, the control 
also improves the system response. The nonlinear 
optimal control employing only one control variable 
proved to be more effective than the traditional pole-
placement control based on the linearized model 
(Benyo et al., 1998; Benyo et al., 2003). However, 
the existence of multiple solutions may jeopardize 
practical application. According to this case-study, 
the minimax control proved to be superior to the 
classical LQ. We plan to investigate other robust 
control strategies of this process employing models 
in the future. 
 
However, until now these control strategies have not 
been implemented yet in a real (practical) 
application, after the necessary further verifications 
they could provide a useful help to control of blood 
glucose level, and in the optimization process of 
diabetic administration. 
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