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Abstract: Part-time studies of the MSc program as source of number of  technical and  scientific 

innovations in Automation and Computer Based Systems Engineering at Faculty of Electrical 

Engineering of SS Cyril and Methodius University in Skopje, are run for more than 15 years.  

This innovation in Unmanned Aerial Vehicles (UAV’s) is the most recent one. By definition, 

navigation is a process of determining the navigational parameters of the centre of mass, of the 

moving object. The system that provides us the navigational parameters is called Navigation 

System. The most used Navigation Systems, developed for a wide range of vehicles, are Inertial 

Navigation System (INS) and Global Positioning System (GPS). These two systems have their 

advantages and disadvantages, which makes them complementary. The best estimates of the 

aircraft position, velocity and attitude can be obtained by GPS/INS integration employing 

Kalman filter implementation. Kalman filtering is a form of optimal estimation characterized by 

recursive evaluation, and an internal model of the dynamics of the system being estimated 
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1. INTRODUCTION 
 

Unmanned Aerial Vehicles (UAV), such as 

spacecrafts, aircrafts, helicopters, free-flying robots 

or mobile robots are increasingly applied in various 

domains, particularly in the military, scientific 

research, and in certain industries. By definition, 

navigation is a process of determining the current 

parameters of movement, like accelerations, velocity 

and position of center of mass, of the moving object. 

The system that provides us with navigational 

parameters is called Navigation System. One of the 

most used Navigation Systems, which is developed 

for a wide range of vehicles, is the Inertial 

Navigation System (INS).  Other system, which is 

the most famous, is the Global Positioning System 

(GPS). This  two systems  have  their  advantages 

and disadvantages, which makes them 

complementary, and the best estimates of the  aircraft 

position, velocity and attitude can be obtained by  

GPS/INS  integration, with Kalman filter 

implementation. The purpose of combining 

navigation subsystems into an integrated system is to 

take advantage of complementary strengths of the 

subsystems.  

 

 

 

 

Kalman filtering is a form of optimal estimation 

characterized by recursive evaluation, and an internal 

model of the dynamics of the system being estimated. 

Kalman filter has the ability to combine the 

subsystems, on the knowledge of the measurements 

noise covariance (GPS measurements noise 

covariance) and the process noise covariance. 
 

 

2. NAVIGATION SYSTEMS 

 

2.1 Inertial Navigation System (INS) 

 

The INS algorithm integrates the accelerations and 

angular rates provided by an Inertial Measurement 

Unit (IMU) to compute the position, velocity, and 

attitude (PVA) of the vehicle (Lin 1991).  
  
The algorithm takes into account the geoid shape and 

a gravity model. A basic flow chart of the operation 

of an inertial navigation system is shown on Fig. I. 

There are many problems with noise and unbounded 

error that must be handled to get any meaningful 

result out of the INS.  
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Fig.I. A flow chart of a strap-down INS 
 

 

Reference Frames and Rotations. For the purposes 

of this work, several reference frames were used, see 

figure II.  Earth Centered Earth Fixed 

Frame );;;( eeee zyxOE , Normal Earth Fixed Axis 

System );;;0( 000 zyxGo
 then Aircraft Carried 

Normal Earth Axis System  );;;( ggg zyxPG  also 

known as Geodetic frame and Body 

frame );;;( zyxPB .  All the frames are in 

accordance with the ISO standards. 
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Fig. II. Reference frames used in INS 
 

As a result from the transition between the various 

reference frames several rotation matrices were 

developed (Deskovski 2004). The first one takes 

measurements in the body frame and puts them into 

the Geodetic frame. 
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where φ  is a roll, θ  is a pitch, and ψ  is a yaw. This 

rotation is the sequence 1-2-3, which is typically used 

in aerospace applications. The next rotation will 

transform points from the ECEF frame to the 

Geodetic  frame. 
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where ϕ  is a latitude and λ  is a longitude.  

 

Navigation Equations. The information provided by 

the IMU such as body accelerations are transformed 

to navigation frame and gravity vector is subtracted. 

The resulting acceleration vector  is integrated with 

respect to time  and we get the velocity of the 

vehicle. The velocity vector is then integrated and we 

can read the position of the vehicle. Navigation 

equations used in this work are: 
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where  gp , gq and gr  are  rotation rates in 

Geodetic frame. If the navigation system is ment to 

work over longer distances we need to take in 

calculation the Corriolis acceleration caused by the 

rotation of the Earth. In this work Corriolis effect 

was not considered. 
 

Sources of Error. There are many difficulties which 

are present in the INS. Accelerometer bias, then 

gyros drift, temperature and vibrations. In this work 

because of simplicity only the accelerometer bias is 

included.  
 

The accelerometer bias has  a quadratic effect on the 

position derived from the IMU (Walchko, 2002), 

 

2

2

1
tbiaserror ⋅=   (4) 

 

Bias  
2

/ sm  
       Error (m) 

      t=100 sec 

        Error(m) 

        t=30 min 

0.1               500               162000 

0.01                 5                16200 

0.001                0.5                 1620 

0.0001               0.05                  162 

 

Table 1. Positional error that results from biases after 

a time of 100 seconds and 30 min 
 

Looking at the table 1 it becomes apparent that  the 

determination of the bias is of critical importance if 

any accurate measurement is expected.  
 

 



2.2 Global Positioning System (GPS) 
 

Global Positioning System (GPS) can be regarded as 

a new navigation sensor. GPS provides range and 

range-rate measurements. The primary role of GPS is 

to provide highly accurate position and velocity 

worldwide, based on range and range-rate 

measurements. The acceleration vector is then 

determined from positions at different time epochs, 

by differentiation of these positions with respect to 

time. Position accuracy of GPS pseudo-range 

absolute positioning is affected by measurement 

noise (few metres) and signal errors like: multipath 

of  the signal, ionosphere delays, troposphere delays, 

signal attenuation, ephemeris error, satellite clock 

error and receiver clock error (Ronback, 2002). Also, 

the GPS signal is susceptible to jamming. For many 

vehicle navigation systems, GPS is  insufficient as a 

stand alone position system. 
 

 

3.  KALMAN FILTER 
 

The Kalman filter (Gene et al. 2000) assumes that the 

random process which has to be estimated is of the 

form: 

 
            GwBuFxx ++=&        (5) 

 

where x is a state value, u  is a control effort, w  is 

white noise with known covariance. 

When measurements are taken of the process at 

discrete moments in  time , they occur according to 

the following relationship: 

 

 vDuHxz ++=                         (6) 

 

where z is a noisy sample, D  is the direct 

transmission of the input to the output, H  is the 

ideal (noiseless) connection between the 

measurement and the state, and ν  is measurement 

error. 

This process can be modeled discretely in the 

following form, assuming there are not control inputs 

u  to the system. 
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The system error is defined as: 

 
−− −= KKK xxe ˆ  

 

where 
−

kx̂  is the best estimate prior to receiving a 

measurement at time 
Kt . 

The error  covariance  matrix at this time is: 

 

 ])ˆ)(ˆ[(][
T

KKKK

T

KKK xxxxEeeEP
−−−−− −−==    (8) 

 

where E  is the  expectation. 

Now a linear blending of both the estimate and the 

measured value is taken. 

 

   )ˆ(ˆˆ −− −+= KKKKKK xHzKxx     (9)                           

 

where Kx̂  is the new updated estimate, z   is 

measured  value, and K  is  a weighted value that 

determines the amount of error between the measured 

value and the best estimate.  

This gain is referred to as the Kalman gain which is 

capable of changing value over time.  

Now looking at the error covariance of this new 

updated estimate, we get the  following equation: 
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KKKK

T

KKK xxxxEeeEP −−==         (10)       

 

Now, after some algebra the following expression 

results for the error covariance matrix: 

 

KKK

T

KKKKKK KRKHKIPHKIP +−−= − )()(   (11)  

 

This is a general expression for updating the error 

covariance matrix, and it applies for any value of K .  

The resulting gain K is computed by the equation: 

 

  1)( −−−− +−= K

T

KKKKKK RHPHHPK .   (12) 

 

4.   SIMULATION MODELS OF  INTEGRATED 

GPS/INS NAVIGATION SYSTEM 

 

When  we make the simulation models we use the 

modular approach, where all systems are running 

independent. Modular approach let us to 

enhancement the models easy and also to substitute 

easy the systems in the current models.  

Simulation model of an Integrated GPS/INS  

Navigation System is shown on figure II. Simulation 

model is realized in Matlab-Simulink and we can see 

that the  model includes Navigation Linear Error 

Kalman Filter. 

 
 

Fig. III Simulation model of Integrated GPS/INS 

Navigation System 
 

Equations used in the  Kalman filter are: 
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where R∆  is the position error, V∆  is  the velocity 

error and b∆  is accelerometer bias, and rn , wn , vn  

are Gaussian white noises, respectively, with known 

covariances (Roumeliotis et. Al 1998).  

From fig. III we can see that  estimated errors in 

position and velocity are subtracted  from the 

position and velocity of the  INS. Also, estimated 

bias in the correction unit is subtracted from the 

outputs from the IMU. The disadvantage of the 

Navigation Linear Error Kalman Filter is that the 

assumption of linearity for the error estimates is not 

always valid. Also, the unbounded error in the un-

corrected INS output can cause numerical problems 

if the algorithm will run for a long time. 

Simulation model of an Integrated GPS/INS 

Navigation System with included Navigation 

Extended Kalman Filter is  shown on figure IV. 

Simulation  model is realized in Matlab-Simulink. 

Navigation Extended Kalman Filter  differs from the 

Navigation Linear Error Kalman Filter. 

 
Fig. IV Simulation model of Integrated GPS/INS 

Navigation System 
 

The Information’s from the GPS receiver (position 

and velocity) are observations to the Kalman filter. 

Extended Kalman filter is realized as an M-file and it 

is executed as a Matlab function block in the 

simulation model, see figure V. 

 

 

 
Fig. V. Extended Kalman filter realized as a Matlab 

M-file and executed as a Matlab function block 
 

The advantage of the nonlinear Kalman filters is that 

they can directly estimate the vehicle dynamics 

(which are non-linear in most cases). Both the 

vehicle states and the sensor measurement equations 

can have nonlinear terms. This results in better 

estimation accuracy, over a wider range of operating 

conditions. The main disadvantage of the nonlinear 

Kalman filters is that the algorithms are more 

complex than the linear implementation, therefore 

requiring more computational resources. 
 

 

5. SIMULATION EXPERIMENTS AND RESULTS 
 

Two simulation models were tested, and two cases 

were considered. In the first case the difference 

between IMU and GPS measurements is constant and 

it is 10 meters. The second case is different and the 

difference between INS and GPS change in the time 

and in some moments of time reaches 50 meters.  

In the simulation UAV is climbing with acceleration 

gaz 3= . The bias in the Linear Error Kalman filter 

is taken that has covariance 2/0049.0 sm  (Vanicek 

and Omerbasic, 2002).  

The covariance of the noise in the IMU is taken that 

is 2/0012.0 smQ = (process noise), and the 

covariance of the noise in the GPS receiver is 

.5mR = (measurement noise). 

Results of the simulation of the Navigational Linear 

Error Kalman filter are shown. Figure VI and VII 

show the true trajectory and estimated trajectory of 

the vehicle in the first case and in the second case, 

respectively. The two smooth curves are the true 

trajectory and the estimated trajectory, and they are 

almost too close to distinguish from one another.  

 
 

Fig. VI. Trajectories of the vehicle in the first case 

 
Fig. VII Trajectories of the vehicle in the second case 

 



 
Fig. VIII Closer look of the trajectories in the 

 first case  

 
Fig. IX Closer look of the trajectories in the 

 second case 

 

The diffrence between the true and estimated 

trajectories is better visible on figures VIII and IX 

which present closer look of  the vehicle trajectories.  

 

 
Fig. X  GPS/INS errors vs. estimated errors in the  

first case 

 
Fig. XI GPS/INS errors vs. estimated errors in the 

second case 

The GPS/INS errors vs. estimated errors, in the two 

cases are shown on Fig. X and XI.  

In the beginning of the simulation we see that 

estimated errors are zero, so we predict perfect 

estimation. The GPS/INS errors and estimated errors 

have a standard deviation of about 10 meters in the 

first case and in the second case, errors have 

occasional spikes up to 50 meters. 

 

 
Fig.XII. Changes of IMU bias in the first case 

 

 
Fig. XIII. Changes of IMU bias in the second case 

 

The changes of IMU bias are presented on fig. XII 

and XIII for the two cases. From where we can see 

the importance of augmenting the system model with 

the bias model. Estimated  bias is subtracted from the 

outputs from the IMU to reduce errors. 

The true and estimated trajectories of the UAV when 

the Extended Kalman filter was simulated are shown 

on figure XIV and XV. The two smooth curves are 

the true trajectory and the estimated trajectory, and 

they are almost too close to distinguish from one 

another. 

 
Fig. XIV Trajectories of the vehicle in the first case 



 
Fig. XV Trajectories of the vehicle in the  

second case 

The difference between the true and estimated 

trajectories is better visible on figures XVI and XVII 

which present closer look of  the vehicle trajectories.  

 
Fig. XVI Closer look of the trajectories in the 

first case 

 
Fig. XVII Closer look of the trajectories in the 

second case 

On figures XVIII and XIX changes of the residual in 

the Extended Kalman filter, in the two cases are 

shown. 

 
Fig. XVIII Changes of the residual in the first case 

 
Fig. XIX. Changes of the residual in the second  case 

 

6.  CONCLUSIONS AND FUTURE WORK 

 

In this work two simulation models of Integrated 

Navigational Systems were presented. Program 

realization was in Matlab-Simulink, were the two 

Kalman filter algorithms were tested. Simulation 

results show the Kalman filter efficiency and 

therefore the efficiency of the Integrated Navigation 

Systems.  

The aim of the simulation experiments was getting 

optimal results, as first phase of development of the 

Integrated Navigation Systems. 

Future work will include identifying a low-power 

microprocessor capable of running the  Kalman 

Filters  in real-time at desired rate and testing in 

hardware-in-the-loop simulation. 

Simulation models will be enhanced by adding others 

systems (sensors), also Kalman filters will be 

enhanced  with  fuzzy logic. 
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