
CONTROL FUNCTIONS DEVELOPMENT FOR DISTRIBUTED
AUTOMATION SYSTEMS USING THE TORERO APPROACH

Luca Ferrarini1, Carlo Veber1, Christian Schwab2,
Marcus Tangermann2, Aggeliki Prayati3

1 Politecnico di Milano, Dip.di Elettronica e Informazione, P.zza L. da Vinci 32,
20133 Milano, Italy, {ferrarin, veber}@elet.polimi.it

2 University of Magdeburg, Center Distributed Systems CVS@IAF, Universitaetsplatz 2,
39106 Magdeburg, Germany,

{christian.schwab, marcus.tangermann}@mb.uni-magdeburg.de
3 University of Patras, Dept.of Electrical & Computer Engineering, Campus of Rio,

26500 Patras, Greece, prayati@ee.upatras.gr

Abstract: The paper presents the design and implementation of an innovative Integrated
Development Environment, developed within the on-going European Research Project
TORERO, to model and design reusable distributed control systems (DCS). This project
proposes an architecture which relies on a development environment based on the Eclipse
tool and the emerging standard IEC 61499 and on a suitable control device where a
portion of the distributed control application can be executed on a specially developed
runtime environment. Copyright © 2005 IFAC

Keywords: Distributed Computer Control Systems, Standards, Functional Blocks, Control
System Design Methodology, Industry Automation.

1. INTRODUCTION

The control and automation of modern
manufacturing systems is characterized by a strong
push towards modularization and autonomy, which
implies the distribution of “intelligence” (that is
control laws, hardware and software control
components) into the controlled plant. In addition, to
enhance the overall system performance and to
integrate automation level with management level,
there is a natural trend to include methods and tools
of the Information and Communication Technologies
down into the automation systems (Heck B.S., 2003).
On the other hand, control components of
manufacturing systems have not experienced the
same trend to modularization and standardization as
the other plant components, most notably the
mechanical and the electrical ones. Such a delay has
the consequence of increasing the various costs
involved in the design, implementation, testing,
installation and maintenance of the overall control
system, and reducing the possibilities to gain real
flexibility, real reconfiguration and reuse of control
solutions (Ferrarini L., 2003a), (Ferrarini L. 2003b).

Clearly, this requires new modeling paradigms able
to capture the overall system description and help the
translation of the more and more strict control
specification into control design and implementation.
Traditional design models and approaches used by
control engineers are based on low-level modeling
paradigms (often programming languages), centrali-
zed approaches, proprietary tools and solutions
(Prayati A., 2003). Finally, the possibility of formal
analysis of design consistency and fulfilment of the
specifications is reduced to sporadic testing or
debugging.
In the recent technical literature, some proposals can
be found on possible solutions to the problem of
designing distributed control systems (DCSs) and the
current lack of interoperability. A first attempt has
been performed in the OSACA project (Open System
Architecture for Controls within Automation
Systems) in ‘90s, whose main goal was to specify a
system software architecture for open control
systems, which is manufacturer independent
(OSACA, 2004). Unfortunately, the basic ideas there
contained did not further developed into suitable
standards or tools. In the robotic field, similar efforts

have been carried out. Although robotic applications
have their own specific features, the concepts of
hierarchy, modularisation, abstraction from the low
level systems, separation of functions from code, and
finally, the adoption of “open” schemes are quite
similar to more general automation systems.

The paper addresses the problem of modeling and
design of (DCSs) and in particular it focuses on the
design and the implementation of an Integrated
Development Environment. The work is drawn from
the on-going European Project TORERO (TORERO,
2004). As opposed to the above mentioned
approaches, such a project does not proposes
software infrastructures, like middleware services
(see e.g. CORBA ones) or predefined modules, but
on the contrary proposes a generic standardized
automation device, an abstraction of communication
services and a high level formalism based on IEC
61499 international standard (Holobloc.com, 2004).
Its key points include the automatization of all the
design steps, from the integration of plug-and-
participate mechanisms, automatic distribution of
function blocks to the devices, automatic generation
of Java code, automatic weaving on the most
common field busses and automation protocols.

The paper is organized as follows. In Sect. 2 the
approach proposed by the TORERO consortium for
an integrated environment that allows the design and
implementation of distributed control systems is
described. In Sect. 3, the software tools for the
implementation of an integrated development
environment following the chosen approach are
presented. The two subsequent sections describe the
design of a portion of this development environment
that allows the design and the implementation of
distributed control applications: Sect. 4 presents the
overall design workflow while, in Sect. 5, the main
elements of such an environment are described.

2. TOTAL LIFE-CYCLE APPROACH: TORERO

The European research project TORERO (TORERO,
2004) aims at defining an integrated distributed non-
hierarchical environment that will allow the
distribution of both control applications and
management functionalities, and will allow the
seamless functioning of intelligent mechatronic
devices. This happens in order to allow for the
maximum possible re-use and self-configuration
throughout the life time of the DCS.
The control system in TORERO is based on the
definition of a new device type (TORERO Device,
TD). The TORERO project develops a new metho-
dology, which takes these actors in account against
the background of ordinary design and development,
software updates and changes, and bug fixes.
Deriving from these considerations, three different
processes have been identified: The engineering, the
re-engineering and the maintenance process. Both
engineering and re-engineering processes are
understood as major changes to the system, whereas
maintenance causes minor changes and can be

performed with less effort. Both engineering and re-
engineering process can be mapped to an unified
approach, which takes the necessities of a fully DCS
into account (see Fig.1).

0. Requirement analysis

C
an be plant-
attached

C
an be plant-attached

M
ust be plant-
attached

C
an be plant-
attached

Information base about
the TDs in the system

1. Device/Network
model Creation

2. Application
Modeling and
Programming

3. Allocation of Application
to the TDs

Allocated Application

4. Weaving and
Compilation

Bytecode

5. Debugging

Bytecode

6. Deployment and
Start up

Requirement specification

7. Normal Operation

Parts of Bytecode deployed to TDs

TD Network

Process Step

Result

Application

0. Requirement analysis

C
an be plant-
attached

C
an be plant-attached

M
ust be plant-
attached

C
an be plant-
attached

Information base about
the TDs in the system

1. Device/Network
model Creation

2. Application
Modeling and
Programming

3. Allocation of Application
to the TDs

Allocated Application

4. Weaving and
Compilation

Bytecode

5. Debugging

Bytecode

6. Deployment and
Start up

Requirement specification

7. Normal Operation

Parts of Bytecode deployed to TDs

TD Network

Process Step

Result

Application

Fig.1. (Re-)Engineering process defined in TORERO

This (re-) engineering process allows for the re-use
of software regarding both application set and
specific application by making the application design
independent from the proposed physical architecture,
as allocation and weaving of communication code
are performed later in the process (steps 3 and 4).
During allocation, the allocation of the different
function blocks of the application to the control
devices is performed. In this process, communication
needs and device resources together with real-time
aspects are taken into account. Following the
allocation, the appropriate communication code is
woven into the application (Schwab C., 2004). Also,
the re-use of software at device level is allowed by
the possibility to incorporate device specific code
during step 2.
The TORERO approach allows a clear separation
between functional design (the user is set free to
choose the best one for his application) and imple-
mentation which is distributed, compliant with
IEC 61499 and assisted through an automatic
allocation of FB to devices, an automatic insertion of
com-munication FB and an automatic translation of
FB application into Java language. As for the last
point, specific novel methods of translation have
been conceived and tested in order to obtain a Java
control code more suitable and apt for industrial
automation applications, as shown in (Ferrarini L.,
2004). This approach in its entirety means a novel
approach in opposition to current state of the art
(Holobloc.com, 2004), which always only considers
single aspects of the entire (re-) engineering process.

As consequence to the above stated, TORERO
defines the smallest part of a control system that can
interact within such an environment - the “TORERO
device” – which will comprise an architecture
governing the control application deployment in the
device, as well as a management part determining the
device behaviour on the basis of information
communicated to the device and its state (see Fig. 2).
Consequently, a TORERO device comprises Control
Application Objects relevant to the part of the overall
control application that is deployed on it, I/O
connections related to the actual physical
connections of e.g. sensing and actuating elements
that the device comprises, and Device functionalities
such as Forced Code Deployment, Code Download
both in a local scale or from the net, Diagnostic
Information, Version Control, etc.

Ethernet + Automation protocol

TORERO
Device

CommunicationCommunication

Internet

System
Integrator

System
Integrator

TD Supplier

TD Supplier

CommunicationCommunication

Internet

System
Integrator

System
Integrator

TD Supplier

TD Supplier

TORERO IDE
• Design / development of control code appl .
• Allocation
• Generation of Communication code
• Integration of web - based services
...

Local operation

TORERO
Device TORERO

Device

Fig. 2. The TORERO overall system architecture.

The design and development of control applications
and the integration of such TORERO devices
requires the use of a TIDE (TORERO Integrated
Development Environment). The TIDE is an off-line
tool that includes several functionalities such as
allocation of control applications to TORERO
devices, support of their configuration, deployment
of the code and configuration to the devices,
validation/verification support, version control
support, documentation support, support of the
reuse/import of previously developed control
functions, specification of the communication
between the TORERO devices, translation of the
control application to device specific languages and
support of the design of graphical user interfaces
(GUI) of the application.
Fig. 3 shows the architectural design of the
TORERO Device and how the different elements
within the device are mapped within the TIDE. In
this picture it can be seen amongst others that
TORERO differentiates between device functions
(which are typical to the device) and application
functions and that TORERO proposes Java as control
function execution language. Regarding the device
functions it can also be stated that they can be deli-
vered as OS based (meaning there is no possibility to
change these functions) and Java-based which means
they can be changed by the application builder.

TORERO_Device_Representation
Ethernet

1. Control Hardware

2. Operating System (OS) 2b. HTTP2a. FTP

3. OS based
Device Function 4. UPnP 5. JVM

8. Control
Application

6. Device and
Parameter Manager

7. Java based
Device Function

TORERO Device

0. Physical Device Components (Mechanical Parts, Sensor Elements, ...)

1b. Comm. Interface1a. I/O Connections

TD
 S

tr
uc

tu
re

TORERO IDE

AppTPB
Source

FBDK – Visual FBDK -- Program Device Description

R
ep

re
se

nt
at

io
n

TCB
TDD

TORERO_Device_Representation
Ethernet

1. Control Hardware

2. Operating System (OS) 2b. HTTP2a. FTP

3. OS based
Device Function 4. UPnP 5. JVM

8. Control
Application

6. Device and
Parameter Manager

7. Java based
Device Function

TORERO Device

0. Physical Device Components (Mechanical Parts, Sensor Elements, ...)

1b. Comm. Interface1a. I/O Connections

TD
 S

tr
uc

tu
re

TORERO IDE

AppTPB
Source

FBDK – Visual FBDK -- Program Device Description

R
ep

re
se

nt
at

io
n

TCB
TDDTDD

Fig. 3. TORERO IDE and TORERO Device model.

3. SOFTWARE TOOLS FOR TIDE

As mentioned above, the TORERO Integrated
Development Environment (TIDE) will be developed
using Eclipse as programming tool and as runtime
environment (www.eclipse.org). Eclipse is an open
source platform for tools, which can be used in a
variety of applications. Based on standard generic
components such as a navigator view, a text editor, a
task view, Eclipse provides a powerful plug-in
concept to adapt it to the specific needs of the user.
Main plug-ins of the developed TORERO IDE are:
• TIDE Device Model (see section 5.1),
• PnP Plug-in using the Universal Plug-and-Play

stack (Cohen, 2000),
• Allocation plug-in (see section 5.3),
• Weaving plug-in (see section 5.4),
• Control Application Editor as an external tool (see

section 4).
The Eclipse tool itself and the plug-ins are
programmed in Java and a so-called manifest file
declares the interconnections between the plug-ins.

The actual control application will also be
programmed in Java. As the TORERO architecture
favours the concepts of distributed automation, it
requires the download of distributed control code to
the TORERO devices. It is also required that the
TORERO architecture works with devices of
different manufacturers that may contain different
processing platforms. This leads to the necessity of
having a hardware platform independent, standardi-
sed software platform inside the TD. Such a platform
is provided by Java, which runs as byte code on a
Java Virtual Machine hosted by the TD.
As strong restrictions of embedded devices to the
processing hardware apply, a simplified JVM may be
used like it is provided by the KVM (Kilo Virtual
Machine) (KVM, 2004), which was developed by
Sun to be used in handheld devices and is best suited
for the needs of embedded devices. It does not
support all commands of a full JVM though, but it
needs less computing power and memory resources.
The KVM is supported by the CLDC (Connected
Limited Device Configuration) configuration,
especially designed for resource-constrained devices.

As for the Control Application Editor instead of
developing an entire editor inside Eclipse, the
preference has been given to an existing free tool
named FBDK (Holobloc.com), compliant with the
standard IEC 61499. Such a tool has been developed
by Rockwell Automation for demonstration purpo-
ses, with the following features: editing of basic,
composite, communication function blocks and of re-
source, device and the overall system configuration;
exchanging data in XML format; generation of java
code; simple graphic interface library; simulation.
As for the generation of executable code the
IEC 61499 does not provide any formal specifica-
tion. In (Ferrarini L., 2004) several approaches for
code generation are shown and analysed and in
particular it is shown that the FBDK (version of Sept.
2003) suffers from some drawbacks related to event
propagation that introduces unnecessary delays in the
execution of function blocks activated by a single
event. To overcome such drawbacks and improve the
overall performances of the control application code,
TORERO proposes an innovative thread-based
approach as described in the above paper.

4. TIDE DESIGN FOR CONTROL APPLICATIONS

In this section, the focus is on the design of the TIDE
functionalities specifically devoted to the design and
implementation of a distributed control application.
The final aim is to automate as much as possible all
the design and implementation steps in the engineer-
ing process. To do so and exploit the functionalities
of Eclipse, FBDK and KVM, the Data Flow Diagram
of Fig. 4 has been conceived.
Starting from the descriptors of the TDs (TDDs, TD
Descriptions) contained in a suitable database (see
the datum D1 of Fig. 1), an implementation model of
the TDs of the system is instantiated in the TIDE by

the TIDE Device Model plug-in. This model also
contains the java classes representing the proxy fun-
ctionalities of the TDs connected. The corresponding
XML format (IEC 61499 compliant) of these functio-
nalities are generated by the XML generator (provi-
ded by the XML Parser plug-in). The XML files can
be used in the external application editor FBDK,
where the control application is designed. The output
of such tool is constituted by a IEC 61499-compliant
XML code used by the Application Importer (provi-
ded by the XML Parser plug-in) to generate the java
(TORERO compliant) classes related to the FBs of
the given application. Such an application also extra-
cts the control application (FB instances and their
connections) and the FBs parameters relevant to the
Allocation Algorithm, whose plug-in maps the appli-
cation FBs to the TDs connected. Starting from the
topology of the control application given by the
XML Parser plug-in and the given mapping, the last
plug-in, Weaving and Compilation, automatically
modifies this topology by inserting suitable Commu-
nication FBs and prepares the code executable by
each TD. Finally, installed on the TD there is a JVM
and the Run-Time Environment (RTE) which is able
to execute the downloaded code for the device.

5. TIDE PLUG-INS AND RTE

The present section describes the main plug-ins and
the RTE that allow the design and implementation of
the distributed control application according to the
TORERO approach.

5.1 TIDE Device Model

The TORERO Device Model is a representation for a
TD within the TIDE and acts as a database for all
actions performed by the TIDE during the (re-)
engineering and maintenance process.

Application [sys] D5

FBtypeP(k) [class]D12

Application [java] D7

Application [class]D11

TORERO Device

RDBMS (tdd) D1

TPB in Device model D2

AllAlgoParameters in
TIDE Device Model

D6 FBDK_FBTypek [fbt] D4

PFBn [fbt] D3

1.0

TIDE
Device
Model

ECLIPSE PLUG-IN

4.0

Allocation
Algorithm

ECLIPSE PLUG-IN

3.0

Application
Design

Tool

FBDK

EXTERNAL APPLICATION

Allocation
In TIDE Device Model

D10

Communication
Network

D9

5.0

Weaving
&

Compilation

ECLIPSE PLUG-IN

6.0

Run-time
Environment

toreroRTE

TD FUNCTIONALITY

FBtypek [class] D8

Download

2.0

XML Parser

ECLIPSE PLUG-IN

2.1

XML

Generator

APPLICATION

2.2

Application

Importer

APPLICATION

Fig. 4. TIDE Data Flow Diagram for the engineering process.

It can be divided into two main parts:
• Device Model specific classes, and
• Function Block specific classes.
The first group of classes contains device specific
information such as:
• basic information of the TD (vendor, serial

number)
• control hardware (processor type and vendor,

storage size),
• operating system (vendor version),
• device functions (OS based and Java based),
• Java Virtual Machine,
• Communication Interface of the TD (Ethernet

interface),
• physical device components (e.g. sensor elements),
• and the configuration (e.g. IP address).
The Function Block specific classes describe all
Function Blocks installed on the TD, whereas the
Function Blocks for the control application, the
TORERO Communication Blocks, and the TORERO
Proxy Blocks are considered. In particular, these
classes encapsulate the elements of IEC 61499
Function Blocks such as the Algorithm, Execution
Control Chart, event and data connections.
The TIDE Device Model will be generated
automatically within the TIDE by extracting all
relevant data from the TDD transferred from the TD
to the TIDE. The TDD is an XML file in which the
TORERO specific description extends the XDDML
(FDCML, 2004) which itself extends the XML file
used by the Universal Plug-and-Play stack. The
following extensions to the mentioned description
languages are necessary to cover all data describing
the TORERO device and the installed software:
communication aspects of the TD, OS, JVM, and
application process.

5.2 XML Parser

This plug-in is composed of two applications.

XML Generator. It creates the XML IEC 61499-
compliant code of the Proxy Blocks stored in the
TIDE Device Model.
Application Importer. The chosen execution model is
the thread-based one described in (Ferrarini L.,
2004). To implement it, a few classes related to the
event propagation have been designed and this appli-
cation generates and compiles, for each FB type
generated by FBDK (in XML format), the correspon-
ding java class (TORERO compliant) and generates
a java file for the whole control application. This
application extracts also information about the
complexity of a FB execution and the time con-
straints associated to event connection among FBs.

5.3 Allocation Algorithm

For the given heterogeneous system characteristics
and distributed application requirements, an alloca-
tion and scheduling algorithm has been proposed
(Prayati A., 2004). The allocation algorithm is
applied for the FBs allocation to the system devices.
FBs are considered as tasks that need to be assigned

to the system resources. The proposed approach
follows the basic guidelines of existing allocation
algorithms (Hou C., 1997)(Jonsson J., 1999) and pro-
poses a hybrid technique where first clusters of tasks
are formed and then the Branch & Bound (B&B)
technique is applied on clusters of tasks instead of
one single task. In that way, the vertexes of the B&B
search tree represent partial assignments of clusters
of FBs to the devices resources. By forming clusters
of tasks before applying the B&B algorithm, the
search space is considerably reduced, while at the
same time the drawback of the clustering technique is
eliminated, since the final allocation scheme is based
on mathematical calculations after scheduling, when
the allocation is already known and then the real
execution time values are used. The allocation
algorithm composes of three basic steps:
• priority assignment, where the tasks are assigned a

priority with respect to the order they will be
considered during the assignment procedure in the
next allocation step. Task priority expresses the
time criticality of the task’s algorithm execution.

• clustering of tasks, where tasks are grouped and
considered as super-tasks (clusters), under the
objective that communication time among tasks is
the minimum possible one.

• B&B is performed on the clusters of tasks in order
to find the optimal task assignment to the system
TDs, with respect to the imposed timing con-
straints. This latter is handled by scheduling all the
alternative cluster assignments to the given TDs.

Time constraints are checked for every inter-task
communication edge and execution time, with
respect to latency and bandwidth of the HRC IAONA
classification (IAONA, 2003). If the constraints
cannot be met, the virtual values for the priority
assignment are adjusted and the algorithm is repeated
from the beginning, until a feasible allocation scheme
is generated.

5.4 Weaving and Compilation

After the allocation of the control application to the
TDs, Step 4 of the engineering process deals with the
automatic generation and adding of communication
related code (aspect code) into the control application
code (component code) using the aspect oriented
programming (AOP) language AspectJ (Tangermann
M., 2003) and with respect to the underlying
automation protocol. The aspect code can consist of
several aspect programs, each of which implements a
specific aspect (e.g. different automation protocols
used in the system). Crosscutting lies at the heart of
aspects. Modular units of decomposition are orga-
nised into clear hierarchies, whereas aspects crosscut
such hierarchies. Join points act as the location where
the aspect code is inserted into the component code,
where the crosscut is. The Aspect Weaver is the core
component of AOP, which takes the aspect code and
the component code, finds join points and weaves
them all together to form a single entity.
This approach for the generation of communication
related code gives the following benefits:
• generic approach for the communication interface,

• possibility to use different communication proto-
cols with no change in the control application code,
e.g. time-triggered (Ethernet Powerlink) or event-
triggered (Modbus/TCP) protocols (Schwab, 2004),

• integration of local (TD intern) and remote (via a
communication infrastructure) access without
adaptation of the control application code.

5.5 Run-Time Environment (RTE).

The designed application is downloaded into TDs in
the form of java byte code. The Run-time
Environment is a portion of the native software of a
TD, which is able to execute the native device
functions and the control application. In particular, to
start a control application, it simply initialises the
system instantiating one thread for each FB-class and
successively “drawing” the event connections using
the methods of these classes. After that an
application can be started, stopped or restarted using
the corresponding methods of each FB-class.

6. CONCLUSIONS

In the paper the design and the implementation of a
development environment for the design and the
implementation of control applications for distribu-
ted control systems is presented. Such an environ-
ment, called TIDE, has been developed within the
TORERO European project, integrating the Eclipse
platform with FBDK, a prototype tool to edit and
simulate a control function application compliant
with IEC 61499. The TIDE is able to automatically
allocate control function blocks to the control devi-
ces, according to user-defined real-time constraints,
and generate java code for distributed control appli-
cations running on micro-VM. Future work includes
the addition of functionalities like closed-loop distri-
buted simulation with the semi-automatic generation
of the simulation model of the process under control.

REFERENCES

Eclipse.org (2004).Available:http://www.eclipse.org.
FDCML (2004). Available: www.fdcml.org.
Ferrarini L. and Veber C. (2004). Implementation

approaches for the execution model of IEC
61499 applications, INDIN’04 – 2nd IEEE
International Conference on Industrial
Informatics, June 24-26, Berlin, Germany.

Ferrarini L., Veber C. and Fogliazza G. (2003a).
Modelling, Design and Implementation of
Machining Centers Control Functions with
Object-Oriented Techniques, IEEE/ASME
International Conference on Advanced
Intelligent Mechatronics (AIM 2003), Vol. II,
pp. 1037-1042, July 20-24, Kobe, Japan.

Ferrarini L., Veber C. and Lorentz K. (2003b). A
case study for modelling and design of
distributed automation systems, IEEE/ASME
International Conference on Advanced
Intelligent Mechatronics (AIM 2003), Vol. II,
pp. 1043-1048, July 20-24, 2003, Kobe, Japan.

Heck B. S., Wills L. M. and Vachtsevanos G. J.
(2003). Software Technology for Implementing
Reusable, Distributed Control Systems, IEEE
Control Systems Magazine, Feb., pp. 21-35.

Holobloc.com (2004). Function Block-Based,
Holonic Systems Technology. Available:
www.holobloc.com.

Hou C., Shin K. (1997). Allocation of Periodic Task
Modules with Precedence and Deadline
Constraints in Distributed Real-Time Systems,
IEEE Transactions on computer, vol. 46, n.12.

IAONA N.N. (2003). Joint technical working group
Hard Real-time, first draft for real-time
classification, unpublished working group
paper. Available: www.iaona-eu.org.

International Electrotechnical Commission,
Techincal Committee 65 Working Group 6,
IEC-TC65 (2000). Function Blocks for
Industrial-Process Measurements and Control
System, Parte I, Architecture, 2000, PAS.

Jobling C. P., Grant P. W., Barker H. A. and
Townsend P. (1994). Object-oriented program-
ming in control system design: A survey,
Automatica, 30, n° 8, pp. 1221-1261.

Jonsson J. (1999). A Robust Adaptive Metric for
Deadline Assignment in Heterogeneous
Distributed Real-Time Systems, Symposium on
Parallel and Distributed Processing.

KVM (2004). Kilo Virtual Machine,
http://java.sun.com/ products/cldc/.

OSACA (2004). Open System Architecture for
Controls within Automation Systems.
Available: http://www.osaca.org.

Prayati A., Kalogeras A., Lorentz K. and Koubias S.
(2003). Engineering Tools to Support Intero-
perability in the Development and Maintenance
of Heterogeneous Distributed Real-Time
Control Systems. Proceedings ADSN – Intern-
ational Workshop on Assurance in Distributed
Systems and Networks. Providence (RI), USA.

Prayati A., Koulamas C., Koubias S., Papadopoulos
G. (2004). A methodology for the development
of distributed real-time control applications
with focus on task allocation in heterogeneous
systems, IEEE trans. on industrial electronics.

Schwab C., Tangermann M., Lüder A., Ferrarini L.
and Fogliazza G. (2004). Mapping of IEC
61499 Function Blocks to automation protocols
in the TORERO project, INDIN’04 – 2nd IEEE
International Conference on Industrial
Informatics, June 24-26, Berlin, Germany.

Tangermann M., C. Schwab, A. Kalogeras, K,
Lorentz, A. Prayati (2003). Aspect-Orientation
of Control Application Code for Distributed
Automation Systems: The TORERO Approach,
JTRES 2003 – OTM Confederated International
Workshops, Java for Real-Time and Embedded
Systems, November, Catania, Italy. LNCS
2889, Springer-Verlag, Berlin, Heidelberg.

TORERO Project (2004), IST-2001-37573,Total life
cycle web-integrated control, funded by the
European Community under the IST Program-
me (1998-2002). Available: www.uni-
magdeburg.de/iaf/cvs/torero.

