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Abstract: Fed-batch filamentous fungal fermentations at the industrial level are
operated today either in an open-loop manner or through simple PI control, both
with limited performance. The main challenge presented by such an operation
is that, due to the presence of uncertainties of the inoculum, the process can
go into oxygen limitation that severely affects production. In this paper, a
cascade control strategy for regulation of the dissolved oxygen is presented,
which incorporates available auxiliary measurements to improve performance. This
strategy is formulated based on the investigation of the structural elements of a
simplified process model developed from experimental data. Experimental results
confirm the efficiency of the proposed control strategy. Copyright c©2005 IFAC
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1. INTRODUCTION

Filamentous fungi are among the most frequently
used cell factories in the fermentation industry.
Their success is due to the relatively well estab-
lished fermentation technology and to the versatil-
ity of strains available, allowing the production of
a wide variety of products: primary metabolites,
antibiotics, enzymes and proteins (McIntyre et
al., 2001).

Traditionally, filamentous fungal fermentations in
industry are operated in fed-batch mode (Titica
et al., 2004). The feed rates are manipulated
open-loop with or without manual intervention.
Also, the biomass concentration is considerably
higher than in other biological process. As a re-
sult of the filamentous structure of the biomass,

high biomass concentration induces high viscosity,
making oxygen transfer difficult (Li et al., 2000).
In addition to difficulties with oxygen transfer,
there are other factors such as the initial prop-
erties of the biomass (inoculum) that brings to a
situation where there is insufficient oxygen for the
biomass to continue its normal operation. Then,
oxygen limitation occurs resulting in a decreased
performance of the microorganisms. The goal of
this work is to come up with a strategy that
reduces the risk of running into oxygen limitation.

Manual control and simple PI controllers have
been used for dissolved oxygen control on this pro-
cess, but the range in which the dissolved oxygen
could be confined is fairly wide. One possibility
would be to operate with a sufficiently high set-



point for the oxygen concentration so that, despite
these large variations, oxygen limitation does not
occur. However, this corresponds to feeding less
substrate and thus low production, which is un-
acceptable. Hence, the need for tight control of
oxygen concentration at a reasonably low setpoint
so that i) oxygen limitation can be avoided and
ii) production is not sacrificed. It is important to
note the operational and optimization objective
behind this project, though only the issue of tight
oxygen control will be addressed in this paper.

The poor performance of a PI controller (or man-
ual control) can be attributed to the fact that
it only uses the information on the variable to
be controlled, though much more information is
available via auxiliary measurements such as the
oxygen uptake rate (OUR) and carbon dioxide
evolution rate (CER). The idea here is to incor-
porate some of these measurements in the control
algorithm. For this purpose, the traditional and
systematic way is to use a model-based controller
with soft-sensors employed to estimate the states
and the control input computed via optimization
using the entire state information (Eaton and
Rawlings, 1990). So, a simplified tendency model
is developed with the parameters identified from
experimental data. A model-based controller with
software sensors is then designed. Also, by investi-
gating the structure of the model, a simple cascade
control scheme is proposed, where the outer-loop
oxygen controller provides the setpoint for the
OUR/CER signal that is controlled in the inner
loop.

Both algorithms are tested experimentally. It is
seen that the level of modeling is insufficient to
provide improved performance with the model-
based controller. On the other hand, the simple
cascade controller proposed is quite effective in
keeping the dissolved oxygen in a very tight range.

The paper is organized as follows. In the next sec-
tion, the process under consideration and its oper-
ation in industry are described. In Section 3, the
first-principle model of the process is briefly re-
viewed. In Section 4, the feedback control scheme
is detailed. The outcome of the experiments,
carried out at pilot-scale level at Novozymes,
Bagsvaerd, Denmark, are presented in Section 5.
Conclusions in Section 6 close the paper.

2. PROCESS DESCRIPTION AND
INDUSTRIAL PRACTICE

2.1 Fungal Fermentation

The process studied in this paper is α-amylase
production by Aspergillus Oryzae. The same sub-
strate (glucose s) is consumed for both growing
the biomass (x) and for producing the enzyme (p).

The main problem this process presents is oxygen
limitation where there is insufficient dissolved
oxygen (DO) in the liquid phase. This is usually
caused by high biomass concentration that, due to
its filamentous structure, increases viscosity and
makes oxygen transfer difficult.

2.2 Current Operation

The typical way of operating the process at
Novozymes is presented in Figure 1. For the sake
of confidentiality, the experimental results are nor-
malized and so no measurement units are pre-
sented. The feeding policy takes into account the
problem of oxygen limitation and it consists of:

(1) a batch phase or growth phase, during which
the substrate concentration is reduced from
a high initial value to its operational domain,

(2) a linearly-increasing feed rate whose role is
to avoid oxygen limitation in the early phase
of the fed-batch, and

(3) a constant feed rate that is chosen in order
to exactly fill the reactor in the remaining
operation time and keep the dissolved oxygen
without bounds.

It can be observed that the initial substrate con-
centration is high, in order to produce a lot of
biomass during the batch phase (growth phase),
which is expected to increase process performance
due to its catalyzing role.

As can be seen from Figure 1, the range of
dissolved oxygen is fairly wide in the operating
interval (20-40%). Also, towards the end of the
batch, increasing the feed rate causes oxygen
limitation. Higher feed rate means more biomass,
higher viscosity and reduced oxygen transfer.

Also, it is important to note that the DO level
drops drastically due to a runaway phenomenon.
This phenomenon has been encountered and ana-
lyzed by the biologists in Novozymes, and the in-
house knowledge can be explained as follows. Once
under oxygen limitation, the biomass tries to react
to this situation to avoid suffocation. Thus, the
filaments spread in an attempt of finding a zone
with higher DO level (they ’reach out for air’).
This spread, however, increases significantly the
viscosity of the medium and decreases the oxygen
transfer even more. This positive feedback causes
the runaway phenomenon, which in turn leads to
lower and lower oxygen levels and probably death
of microorganisms.

So, it is clear that, if a tight control of oxygen
is not put in place, the risk of running into
oxygen limitation is very high. Therefore, it is
necessary to study the possibilities of combatting
uncertainties and avoiding oxygen limitation in
order to maintain reproducible production levels.



Fig. 1. Experiment I - current operation, s(0) =
0.9.

3. MODELING

The biomass, due to its filamentous structure, is
divided into three regions (Agger et al., 1998):

• active region (xa) - responsible for produc-
tion

• extension region (xe) - responsible for growth
• hyphal region (xh) - corresponding to the

inactive part of the biomass.

The macroscopic reactions read:

s + DO
xa→ xe

s + DO
xe→ xa → xh

s + DO
xe→ p

A first-principle model of the process was built
with the aim of developing a control scheme
(Titica et al., 2004). Here, only the dynamic mass
balance equations are given, necessary to justify
the control structure presented in Section 4. The
algebraic equations (Fi, i = {1, 2, ..., 6}) can be
found in (Titica et al., 2004).

Morphological states

ẋe = q1 −
F

V
xe, xe(0) = xe0

ẋa = q3 − q1 − q2 −
F

V
xa, xa(0) = xa0

ẋh = q2 −
F

V
xh, xh(0) = xh0

(1)

where q1 = F1 is the rate of extension (branch-
ing), q2 = F2 the rate of inactivation, q3 = F3 the
growth rate, F the feed rate, and V the volume.

Glucose

ṡ = −(Yxsq3 +Ypsrpsxa + ms(xa + xe + xh))

+
F

V
(sf − s), s(0) = s0

(2)

where rps = F4 is the specific rate of enzyme
production, ms the maintenence coefficient, and
sf the feed concentration. Yxs and Yps are the
yield coefficients for substrate consumption for
growth and production, respectively.

Enzyme

ṗ = rps −
F

V
p, p(0) = p0 (3)

Dissolved oxygen

ḊO = −rDO(xa +xe + xh) + kLa(DO∗ − DO)

−
F

V
DO, DO(0) = DO0

(4)

where rDO = F5 is the specific rate of oxygen
consumption, kL = F6 the gas-liquid mass trans-
fer coefficient, a the transfer area, and DO∗ the
equilibrium DO level.

Volume

V̇ = F − Fevap, V (0) = V0 (5)

where Fevap stands for the water evaporation rate.

All model parameters, except the ones related
to the growth of the individual biomass compo-
nents, were fitted to industrial data provided by
Novozymes. The growth parameters could not be
fitted since biomass components were not mea-
surable individually. The measurements used for
model fitting were i) on-line: DO, viscosity (in-
cluded in F6), OUR, CER, V and ii) off-line:
enzyme level p and quantity of total biomass
(x = xa + xe + xh).

4. CONTROLLER DESIGN

As mentioned above, simple output controllers for
DO control do not provide sufficient level of per-
formance. So, additional measurements are sought



to be used to improve performance. The auxiliary
measurements that are available for this process
are pH , pressure, viscosity, V , OUR and CER.
Since pH and pressure have not been incorporated
in the model and the viscosity sensor is not always
reliable, the idea is to come up with a control
strategy that uses OUR, CER and V measure-
ments.

4.1 Model-based Predictive Controller

The traditional way of incorporating additional
measurements is through a software sensor fol-
lowed by control input computation (either an-
alytically or via optimization) (Eaton and Rawl-
ings, 1990).

In the software sensor part, the process model
developed in the previous section is used to pre-
dict the states of the model in some open-loop
manner (Dochain, 2003). As some of the states
(DO and V ) and variables (OUR and CER) are
measurable, the corresponding equations are sim-
ply omitted and the states and variables replaced
with the measurements.

For the computation of the control input (feed
flow rate), an optimization-based approach is used
(Bemporad, 1998). To be cautious, the predicted
dissolved oxygen trajectory is also extracted from
the optimization routine, and a simple controller
is used to reduce the difference between this and
the measured trajectories.

4.2 Cascade Controller

Interesting features can be seen by analyzing the
structure of oxygen dynamics. The feed rate has
at least two main effects on the dissolved oxygen:
(i) an immediate effect through dilution (the last
term on the right hand side of (4)) – increasing
F decreases DO, and (ii) integral effect through
oxygen consumption (first term) – increasing F
increases the substrate in the reactor and thus
the consumption, which in turn decreases DO.
The influence of F on the transfer between the
gaseous and the liquid phases (second term) is
quite negligible compared to the other two terms.

If the DO level is controlled only through dilution,
as simple linearizing or output controllers do, the
accumulation of substrate causes a further dip
in DO, which gives rise to oscillations and poor
performance. This is typical of systems where
the zero dynamics plays an important role in the
process performance (Mullhaupt et al., 1999).

This problem can be better understood by con-
sidering the linearized version of a problem with
both direct and integral effects: ẋ1 = −a x2 − u

and ẋ2 = u, where a is a factor that represents
the relative importance of the direct and integral

terms. In transfer function form, X1(s)
U(s) = − s+a

s2 .

The characteristic polynomial with a proportional
controller −k is s2 + ks + ak which will have
complex roots if k < 4a. So, in the presence of
a fast zero (a large), one needs to use a very large
gain to get non-oscillatory performance. Such a
large gain may not be admissible due to other
couplings and nonlinearities of the problem.

Though including derivative action is an option to
improve performance, it is not really feasible due
to the large amount of noise in the measurements.
But, fortunately rDOx can be ’measured’ via
OUR and CER measurements. So, the idea is
to use rDOx as a manipulated variable to control
the dissolved oxygen and F to control rDOx. This
leads to the cascade structure of Figure 2, in
which the role of the inner loop is to regulate
the substrate consumption based on OUR and
CER measurements, while the outer loop gives
the setpoint for this consumption.

ProcessPPI
DOsp F

(OUR+CER)/V

DO

+

-

+

-

Fig. 2. Cascade controller for dissolved oxygen

Going back to the simple linear example, ẋ1 =
−a x2 − u and ẋ2 = u, the proposed cascade
control (without integral action) is equivalent to
u = ki(−ko(x1,ref − x1)− x2), which corresponds
to a full state feedback (ki is the inner-loop gain
and −ko the outer-loop gain). The characteristic
polynomial is then s2 +ki(ko +1)s+akiko, whose
poles can be placed anywhere. Thus, the proposed
cascade control is one way of implementing a
state feedback for the part of the dynamics that
concerns dissolved oxygen.

5. EXPERIMENTAL VERIFICATION OF
THE PROPOSED SCHEMES

The results from two experiments are presented
in Figures 3 and 4.

5.1 Performance of Model-based Controller

The model-based controller is tested during the
first phase of Experiment II. Though the model
was fit to give good one-step ahead predictions,
and fairly reasonable multi-step simulations, the
optimization drove the system to unrealistic sce-
narios. The reasons for such a behavior could be
numerous, ranging from accuracy of the model to



local minima of the optimization routine. More
insight needs to be obtained to critically evaluate
the shortcomings of this controller.

Fig. 3. Experiment II - model-based predictive
control followed by cascade control, s(0) =
0.089.

5.2 Performance of Cascade Controller

Since the model-based controller did not give
reasonable performance, it was decided to switch
on the cascade controller with constant setpoint
after 0.45 time units in Experiment II. The glitch
around 0.6 time units is caused by a sensor failure
and the dip near 0.7 time units is due to a
deliberate change in setpoint. It can be seen
that the setpoint tracking is quite satisfactory.
Again, in Experiment III, the cascade controller
is put in place after 0.07 time units and worked
satisfactorily until 0.75 time units, as explained
in Section 5.4. The deviation from the setpoint in
the operational interval is 2%, which is a major
improvement compared to the usual operation
which had a range of 20 %.

5.3 Initial Substrate Concentration

As can be seen in Figure 1, the dissolved oxygen
goes to zero, even before the feeding starts. This
is due to the high initial substrate concentration
which invariably pushes the system to oxygen

Fig. 4. Experiment III - cascade control, s(0) =
0.089.

limitation at the end of the batch phase. So, the
idea is to reduce s0 to avoid this problem.

Also, simulation studies on the developed model
predicted that the same amount of enzyme could
be produced with a lower value of s0. This is
because, by reducing s0, only the amount of
inactive biomass is reduced, while the amount
of active biomass remains unchanged (Bodizs et
al., 2004). In addition, the model suggested that
a lower s0 is good for oxygen control since growing
less biomass in turn decreases the viscosity of the
medium, thus leading to better oxygen transfer.
So, the experiments were carried out with s0 being
one-tenth of its usual value.

However, the experimental results indicate that,
with reduced initial substrate concentration, the
production is only two-thirds of its usual value.
The reason might be due to the effect of pH , that
has not been considered in the model. Note that in
practice (as can be seen in Figure 1), the medium
is slightly acidic during growth phase, while it
is neutral during production. As a consequence,
growth requires condition that are different from
those required for production. As the amount of
substrate available during the growth phase is
considerably reduced by lowering s0, very little
biomass is formed. Thus, the production phase
start with a small amount of biomass, that is
insufficient to produce the required amount of
enzyme.



5.4 Setpoint for Dissolved Oxygen

Once a good controller is put in place, an impor-
tant decision is to choose an appropriate setpoint
for the dissolved oxygen. Once again, we turned to
the model to provide the setpoint, which gives a
setpoint smaller than that in Experiment II. The
setpoint provided by the model is considered to be
below the norm and risky in industrial standards,
and the experimental results confirmed the same.

This setpoint is implemented in Experiment III
and the controller worked satisfactorily for most
of the time. But the ringing behavior, typical of
oxygen limitation, started to occur after 0.75 time
units. Once this mode is entered, the phenomena
of oxygen limitation being highly nonlinear, the
linear cascade control failed to pull the system
out of it.

5.5 Transients

Though the regulatory performance of the con-
troller is very good, the transients show an over-
shoot. This is due to saturation of the input and
other factors not being properly accounted for
in the control design. Other strategies, such as
controlling the OUR, can be applied since it is a
more reliable indication of biomass activity than
DO at an early phase of the batch. These are
some issues that need to be looked into in the
near future.

6. CONCLUSION

The main outcome of this study is an efficient
control scheme for the dissolved oxygen. The
proposed cascade controller effectively regulates
the DO level and a proper setpoint needs to
be chosen to keep the system away from oxygen
limitation. The advantage of the proposed control
strategy is that it is simple to apply and not
specific to the strain of microorganism studied in
this paper. Thus, it is applicable to a wide variety
of fungal fermentations.

This study indicated that the model developed
has several shortcomings. It predicts a feasible
operation with a low initial substrate concentra-
tion and a low dissolved oxygen setpoint, both of
which could not be experimentally verified. Also, a
model-based optimization approach does not yield
satisfactory results.

In the next experiments, the initial substrate
concentration could be increased to some inter-
mediate values. A strategy for pH control needs
to be formulated to guarantee a certain level of
biomass growth, and thereby certain production
levels. Another open challenge is to chose the

best setpoint or reference profile for the dissolved
oxygen.
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