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Abstract:  
In this work the Integrated Design of the activated sludge process in a wastewater 
treatment plant has been performed, including a linear multivariable predictive controller  
with constraints. In the Integrated Design procedure, the process parameters are obtained 
simultaneously with the parameters of the control system by solving a multiobjective 
constrained non-linear optimization problem, taking into account investment and 
operation costs. The mathematical optimization for tuning all parameters is tackled in two 
iterative steps. First, plant parameters are obtained using a sequential quadratic 
programming (SQP) method, and secondly, a type of random search method is used to 
tune the controller parameters (horizons and weights) . Due to the difficulty to measure 
some variables, there has been also developed a Kalman Filter for state estimation. 
Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
The traditional mode of designing processes has been 
the use of heuristic knowledge concentrated on 
determining the economically optimal process 
configuration among many possible alternatives. 
After the configuration is selected, the process 
parameters and a steady state working point are 
evaluated in order to satisfy operational requirements 
and reduce investment costs. In this procedure, there 
is no consideration about the operability and 
controllability, resulting plants very difficult to 
control. Once the process has been designed, the 
following step is the selection of the controller 
structure and tuning. The design and control of 
processes are tasks performed sequentially, and 
examination of controllability occurs only after the 
optimal process configuration and parameters are 
known.  
 
Integrated Design methodology allows for the 
evaluation of the plant parameters and control system 
at the same time, making the designed system more 
controllable (Fisher, 1988; Luyben, 1993). At design 
stage, controllability indicators are evaluated together 
with economic considerations, in order to give an 
optimum plant. This problem is stated 
mathematically as a NLP/DAE multiobjective 

optimization problem with non-linear constraints.  
Many works apply Integrated Design techniques, 
particularly to chemical process design, such as 
distillation systems or reactors, stressing the 
interactions of design and control (Ross, 2001; Gil, 
2001). These works also tackle process structure 
selection by solving a synthesis problem. A 
comprehensive review of advances in the area is 
given by  Sakizlis (2004).  
 
Some good examples of Integrated Design applied to 
the activated sludge process are given by Francisco 
(2003), where PI controllers and the plant were 
obtained, including linear matrix inequality (LMI) 
constraints to state stability conditions and some 
desired closed-loop behaviour, and by Vega (1999), 
that presents a study of Integrated Design with PI 
controllers applied to different plant structures. 
Despite of the complicated dynamics of the process 
under design, works adding advanced controllers to 
the Integrated Design procedure have not been 
reported in the literature and it could be a good way 
to improve control performance. In this work, model 
predictive control (MPC) has been selected as 
advanced control method because of the existence of 
several successful applications in activated sludge 
control (Vega, 1999; Nejjari, 1999; Sotomayor, 
2002) and the easiness to deal with constraints. 



One important issue in Integrated Design is the 
tuning of controller parameters. Usually the tuning of 
these parameters has been performed using expert 
knowledge and a trial and error procedure. However, 
some works deal with automatic tuning of MPC. Ali 
(1993) proposed an off-line procedure for tuning the 
algorithm parameters of a nonlinear predictive 
controller specifying time-domain performance 
criteria. Results are good, but the tuning of integer 
parameters such as horizons is performed using a non 
intelligent grid search. For linear MPC, Al-Ghazzawi 
(2001) has developed an on-line tuning strategy 
based on the linear approximation between the 
closed-loop predicted output and the MPC tuning 
parameters, but without considering output 
constraints on the on-line optimization step.  
 
At the view of previous works, the main 
contributions of this work are the following. First, a 
new method for optimal automatic tuning of linear 
MPC parameters taking into account input and output 
constraints has been developed and tried for linear 
plants and the activated sludge process. This tuning 
method uses a specific random search based on the 
optimization algorithm of Solis (1981) for MPC 
integer parameters tuning. The second contribution is 
to develop Integrated Design techniques in order to 
perform at the same time the design of the optimal 
plant for activated sludge process and the optimal 
linear MPC for this process. This strategy has been 
tested in one simulated example based on a real 
wastewater treatment plant. 
 
In addition to costs, other performance specifications 
were considered in the Integrated Design procedure, 
such as the Integral Square Error (ISE) or the integral 
of changes in the manipulated variables. The 
methodology proposed here is a general one, and any 
other dynamic performance criteria can be 
considered. The use of linear models also allows for 
the specification of convex performance criteria 
within an LMI framework. 
 
The paper is organized as follows. First, the activated 
sludge process is presented and the way to implement 
an MPC for this process is explained. Secondly, a 
method for automatic tuning of the MPC is presented 
and applied to a linear plant and the activated sludge 
process. Then, the Integrated Design procedure is 
stated and solved for the activated sludge process, 
showing some results and ending with conclusions. 
 
 

2. DESCRIPTION OF THE ACTIVATED 
SLUDGE PROCESS AND MODEL 

PREDICTIVE CONTROLLER 
 
2.1. Plant description 

 
For applying Integrated Design methodology, a 
wastewater treatment plant has been selected. The 
plant layout is represented in Figure 1, which is a 
simplified model of a real plant. It consists of one 
aeration tank and one secondary settler. The basis of 
the process lies in maintaining a microbial population 
(biomass) into the bioreactor, that transforms the 

biodegradable pollution (substrate) when dissolved 
oxygen is supplied through aeration turbines. Water 
coming out of the reactor goes to the settler, where 
the activated sludge is separated from the clean water 
and recycled to the bioreactor. 
 
The whole set of variables is presented in Figure 1. 
Generically, “x” is used for the biomass 
concentrations (mg/l), “s” for the organic substrate 
concentrations (mg/l), “c” for the oxygen 
concentrations (mg/l) and “q” for flow rates (m3/h). 
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Fig. 1: Selected plant for Integrated Design 

 
A first principles model of the system is obtained by 
considering mass balances of oxygen, biomass and 
organic substrate in the whole plant, together with the 
equilibrium equations for the flows of water and 
sludge. Note that three layers of different and 
increasing biomass concentration are considered in 
the settler. This model has been linearized to use it as 
internal model in the MPC studied. 

 
2.2. Control problem 
 
The control of this process aims to keep the substrate 
at the output (s1) below a legal value despite the large 
variations of the flow rate and the substrate 
concentration of the incoming water (qi and si). 
Another control objective is to keep dissolved 
oxygen concentration (c1) around 2 mg/l, 
concentration that is necessary for the proper 
working of activated sludge process. 
 

 
 

Fig. 2: Substrate disturbances at the influent 
 

One of the main problems when trying to control the 
plant properly are the input disturbances qi and si. 
The set of disturbances for designing the plant 
(Figure 2) has been taken out from a real wastewater 
treatment plant and it has been used as system input 
in dynamic simulations.  

 



The general structure of a multivariable controller 
applied to the activated sludge process can be seen in 
figure 3. Two manipulated variables are considered: 
recycling flow (qr1) and aeration factor (fk1), and also 
three outputs: biomass (x1) , oxygen and substrate in 
the reactor. In this case the biomass is not controlled, 
it is only a constrained variable between two limits 
for a good performance of the process.  
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Fig. 3: General controller structure 

 
2.3. Model predictive controller applied to the 

process 
 

A standard multivariable MPC has been considered 
to apply the automatic tuning procedure and the 
Integrated Design methodology proposed in this 
paper. It calculates manipulated variables by solving 
the following on-line constrained optimization 
problem subject to constraints on inputs, predicted 
outputs and changes in manipulated variables. 
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where k denotes the current sampling point, ˆ( |y k i k+  
is the predicted output at time k+i, depending of 
measurements up to time k,  is the reference 
trajectory,  are the changes in the manipulated 
variables, Hp is the upper prediction horizon, Hw is 
the lower prediction horizon, Hu is the control 
horizon, Wu is a diagonal matrix representing the 
weights of the change of manipulated variables and 
Wy is a diagonal matrix representing the weights of 
the errors of set-points tracking. 
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The MPC prediction model is a linear discrete state 
space model of the plant obtained linearizing the 
model equations. The reference trajectories approach 
the set-point trajectories exponentially from the 
current output values, with Tref as the ‘time constant’ 
of the exponentials. 
 
In the activated sludge process, substrate 
concentration in the biological reactor is difficult to 
measure on-line. For this reason a Kalman Filter 
estimator was incorporated to the MPC algorithm, 
considering only x1 and c1 as measured outputs. 
Another specific issue for our process is that when 
there is no way to satisfy constraints, for example, 
due to very large disturbances, soft constraints 
technique is used to keep the controller feasible. 
 
 
 
 

3. OPTIMAL AUTOMATIC TUNING OF MPC  
 
3.1. MPC tuning parameters 
 
The main tuning parameters are those affecting the 
behaviour of the closed loop combination of plant 
and MPC. The most important are the weights Wu in 
the controller cost function, the prediction and 
control horizons (Hp, Hu), and Tref  in the reference 
trajectories. Note that when working with a 
multivariable controller, weights in the cost function 
are matrices, so several different values will be 
tuned.  
 
3.2. Optimization problem 
 
The automatic tuning procedure of MPC parameters 
Wu, Hp and Hc, is based on the minimization of 
dynamic performance indexes like integral square 
error (ISE) and the integral of control variations 
(CTR), defined by the following equations: 
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where c1r is the dissolved oxygen reference and s1r 
the substrate reference. Due to the different 
magnitudes of variables, some normalization factors 
β are included in the equations. 
 
The tuning procedure consists of minimizing the 
following function: 
 

2 1 2( )f c w ISE w CTR α= + +       (4) 
 
where ( ), ,p c uc H H W= , and w1, w2 are suitable 

weights for optimization. Parameter α is a penalty 
factor added to f2 when the controller obtained in the 
iterative procedure is infeasible.  

 
3.3. Algorithm description 
 
The main difficulty to solve this optimization 
problem is that controller horizons are integer values, 
so classical optimization algorithms cannot be used. 
Therefore, a modified random search method based 
on Solis algorithm (1981) has been proposed, for 
optimizing not only the horizons but also the 
controller weights Wu. The algorithm steps are the 
following: 
 

I. One initial point for all controller parameters 
( )(0) , ,p c uc H H W=  is selected. Initial variances 

for random vectors of Gaussian distributions 
are selected. The initial Gaussian centre vector 
for the real part is . (0) 0b =

II. Two random vectors of Gaussian distributions 
are generated, ( )i kξ  integer (for the horizons) 
and ( )r kξ  real (for the weights) with Gaussian 
centre ( )b k . Index k is the current iteration. 



III. New points are obtained by adding and 
removing ,( )i kξ ( )r kξ  to the current point. 
Variables limits are checked. 

IV. Cost function f2 is evaluated at the original 
point and at new points, and the algorithm 
chooses the point with the smallest cost value.  
Vector  is also modified to improve 
convergence.  

( )b k

V. The variance for generating the random 
vectors in step II is decreased. If some 
convergence criteria is satisfied, stop the 
algorithm, otherwise return to step II and make 
k=k+1. 

 
3.4. Tuning results 
 
In order to test the procedure, several cases have 
been studied. For discrete models, the sampling 
period is T=1 and parameter value Hw=1 was fixed. 
For all controllers, set point for substrate is 55 mg/l 
and for dissolved oxygen is 2 mg/l. Note that more 
than follow closely this values, the real aim of the 
controller is to keep substrate output below a fixed 
limit and dissolved oxygen over a certain value. 
Matrices Wy and Wu  are properly scaled for better 
performance. 
 
¾ Results considering linear MPC without 

constraints applied to a linear system 
 
First of all, some simple results of MPC without 
constraints tuning are shown, to evaluate the 
proposed algorithm (Table 1). The controller has 
been applied to a multivariable linear system. Perfect 
set-point tracking is obtained when control variations 
are not penalized (Figure 4).  
 

Table 1: Tuning results with unconstrained MPC 
Weigths in f2 w1= 1;w2= 0 w1= 1;w2= 0.04 

Wu [0 0] [1.3  6.5] 
Tref 0 7.1 

Hp, Hc 3 , 3 24 , 12 
Figures Solid line Dash dotted line 

 

 

 
Fig. 4: Results with unconstrained MPC 

 
 
 

¾ Results considering linear MPC with constraints 
applied to a linear plant 

 
Now results when an MPC with constraints is 
considered for tuning are presented (Table 2). A 
linearized  model of the activated sludge process is 
included as internal model of the controller and as 
plant model. In this case disturbances are assumed to 
be unmeasured. Constraints included in the controller 
are (soft constraints for s1, x1  and c1): 
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Table 2: Tuning results with constrained MPC 

 
Weigths in f2 w1= 1;w2= 0 w1= 1;w2= 0.2 

Wu [0 0] [5.03 2.87] 
Tref 0 1.26 

Hp, Hc 17 , 7 22 , 10 
Figures Solid line Dash dotted line 

 
As can be seen in figure 5, results are obviously 
worse than using the unconstrained controller, 
obtaining better set-point tracking when control 
variations are not penalized. 
 

 

 

 
Fig. 5: Results with constrained MPC 

 
¾ Results considering linear MPC with constraints 

applied to the activated sludge process 
 
In this case, the plant model is the real nonlinear 
model of the process. Results are shown in Table 3 
and Figure 6. Constraints included in the controller 
are the same that in the previous point, excepting for: 
 

1 10 1 6 0qr e fk e1 6< ∆ < < ∆ <           (6) 
  



Table 3: Tuning results with constrained  MPC applied to 
the activated sludge process 

 

 

 
Fig. 6: Results of  constrained MPC applied to the 

activated sludge process 

 
As can be seen in figure 6, there is only a little 
difference between the tuning taking into account 
changes in the manipulated variables (w2 ≠ 0) and 
giving no weight corresponding to that changes (w2 = 
0). Control signals are also similar in both cases. 
Then, for this plant the ISE does not seem to be the 
best index for designing the controller. Anyway, 
when solving Integrated Design it gives good results 
because the plant parameters will also change.  
 

4. INTEGRATED DESIGN OF PLANT AND 
MPC  

 
The Integrated Design problem consists of 
determining simultaneously the plant and controller 
parameters and a steady state working point, while 
the investment and operation costs are minimized. 
Non-linearities of the plant, inclusion of dynamic 
simulations, relatively high number of variables, 
increase the complexity of the problem and make 
necessary the use of an iterative two steps 
optimization approach. In the first step the MPC is 
tuned using the method exposed in 3, and in the 
second step the plant is designed according to the 
procedure explained below. 

 
4.1. Design of the plant 

 
The plant design step for Integrated Design consists 
of minimizing the following cost function, 
representing construction and operation costs, where 
V1 and Ad are the volume of the reactor and the cross-
sectional area of the settler, fk1 is the aeration factor 
in the reactor and q2 is the total recycling flow. 
 

1
2 2 2( ) 1 1 2 3 1 4 2f x w V w A w fk w qd= ⋅ + ⋅ + ⋅ + ⋅ 2     (7) 

   
subject to lower and upper bounds for optimization 
variables (x) and nonlinear constraints representing 
the physical, process and controllability constraints. 
The numbers wi  (i = 1,…,4) are the corresponding 
weights for each term. Some constraints are: 
 
• Residence time and mass load in the aeration 
tanks:    

1
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• Limits in hydraulic capacity and sludge age in 
the settler and limits in the relationship between the 
input,  recycled and purge flow rates: 
 

Weigths in f2 w1= 1;w2= 0 w1= 1;w2= 1 
Wu [2.54 3.46] [5.35 2.25] 
Tref 9.73 5.47 

Hp, Hc 10 , 2 10 , 6 
Figures Dash dotted line Solid line 
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• Constraints on the non-linear differential 
equations of the plant model to obtain a solution 
close to a steady state (ε close to zero). For example, 
the constraint for substrate in the first reactor is:       

( )
2
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• Constraint over the ISE norm 
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where Tmax =166 hours is the simulation time and the 
value of β is fixed for each controller. This constraint 
is included to obtain a plant with some closed loop 
disturbance rejection capability, independently of the 
controller implemented. 
 
4.2. Two steps optimization algorithm 
 
The algorithm for solving the nonlinear optimization 
problem generated tackles the problem in an iterative 
two step approach. The first step performs the 
controller tuning, and the second step the plant 
design. Firstly, with an initial fixed plant, the 
controller is designed. Once the controller is 
designed, the plant is optimized with the controller 
obtained in the previous step. Then the controller is 
designed again, but using the new plant parameters 
obtained before. The loop is finished when 
convergence criteria is reached. (see figure 7) 
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Fig. 7: Iterative loop for Integrated Design 

 
For optimization of f1 cost function, all decision 
variables are real numbers, so the SQP method 
(MATLAB Optimization Toolbox) has been used.  
For optimization of f2 the procedure explained in 3.3 
has been used. 
 
4.3. Integrated Design results 
 
The activated sludge process has a response delay 
when applying input variations. For some plant 
dimensions, the linearized model shows right-half 



plane zeros producing inverse response. Because of 
this, the lower prediction horizon Hw, has been set 
here to 3, allowing a delay of 2 hours before the 
controller starts to penalize set-point deviations of 
substrate. Results are shown in table 4 and figure 8. 
Integrated Design improvement can be deduced from 
substrate variations, that in this case are much lower 
that in figure 6. Due to the high computational 
demand, the sampling period here is T=2 hours. 
 

Table 4: Integrated Design results 
 

Weigths in f2 w1= 1;w2= 0 w1= 1;w2= 2 
Wu [0.06 0] [18.57 25.67] 
Tref 2.72 21.80 

Hp, Hc 21 , 4 16 , 4 
V1 8167 8910 
Ad 3229 3193 

Figures Dash-dotted line Solid line 
 

 

 

 
 

Fig. 8: Integrated Design results 
 
 

5. CONCLUSIONS 
 
In this paper an Integrated Design procedure to 
obtain one optimal plant for the activated sludge 
process and its MPC tuning parameters has been 
developed. The design procedure shown here 
produces better controllable plants that the classical 
procedure. The responses for closed loop design with 
MPC show clearly a good behaviour for interest 
variables. When Integrated Design procedure is 
solved, the designed plant is able to fulfil disturbance 
rejection requirements with optimum cost units. This 
is an important result because one can obtain an 
optimum plant with lower construction costs and 
good disturbance rejection. Note also that no further 
MPC tuning is needed because the optimization gives 
also its optimum parameters. The solved problem 

guarantees that the dynamic non-linear model of the 
plant is satisfied, as well as the operation and process 
constraints. This Integrated Design methodology also 
allows for the easy inclusion of other indexes for 
tuning controller parameters, such as LMI conditions. 
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