
A DIFFERENCE BASED EFFICIENT
APPROXIMATE ALGORITHM FOR MODEL

PREDICTIVE CONTROL OF
INPUT-CONSTRAINED LINEAR SYSTEMS

Yutaka Saitou ∗ Jun-ichi Imura ∗

∗ Tokyo Institute of Technology,
Dep. of Information Science and Engineering

8W-1 2-12-1 Ookayama, Meguro-ku,Tokyo 152-8552,
JAPAN

{ysaitou|imura}@cyb.mei.titech.ac.jp

Abstract: This paper proposes a novel efficient algorithm for model predictive
control (MPC) of input-constrained linear systems. Based on the fact that the
problem of MPC is reduced into the problem of calculating the solution trajectory
of the discrete-time linear complementarity (D-LC) systems, the proposed algo-
rithm fully exploits the information on the solution of the problem at the previous
time step, as like the difference technique used in the calculation of solution
trajectories of a dynamical system. It is shown that the proposed algorithm is
much more efficient than the other conventional algorithms at a large prediction
horizon. Copyright c©2005 IFAC.

Keywords: Prediction control, Linear Complementarity Systems, Constrained
Systems

1. INTRODUCTION

It is well known that the Model Predictive Con-
trol (MPC) problem of a input-constrained linear
system to minimize a quadratic form cost function
is reduced into the Quadratic Programming (QP)
problem, and further, in terms of the Karush-
Kuhn-Tucker condition, in to the Linear Com-
plementarity (LC) problem including the current
state of the system as a parameter. Thus it is also
known that the closed loop system obtained by the
MPC is equivalent to the Discrete-time Piece Wise
Affine (D-PWA) system and the Discrete-time
Linear Complementarity (D-LC) system (A. Be-
mporad and Schutter, 2002). Based on this fact,
the off-line computation method by the multi-
parametric QP algorithm, which is innovative, has
been extensively developed (A. Bemporad and
Pistikopoulos, 2002). However, its computational

cost is too much for a large prediction horizon.
On the other hand, some efficient on-line com-
putation methods, although they are traditional,
have been still extensively developed (see, e.g.,
the active set method (Maciejowski, 2002), the
Lemke method based algorithm (Camacho, 1993),
an algorithm for the special class of LC-problems
(Saitou and Imura, 2004)). However, the existing
on-line solvers are not still suitable for larger size
of MPC problems. This is because they basically
solve the QP or LC problem obtained at each time
step using the static (i.e., usual) QP or LC solver.

This paper thus proposes a novel on-line computa-
tion algorithm for the MPC of input-constrained
linear systems, which solves a trajectory gener-
ation problem of D-LC systems as like the dif-
ference technique in the calculation of solution
trajectories of dynamical systems. Thus the pro-

posed algorithm is efficient since it fully exploits
the information on the solution at the previous
step. Although the proposed algorithm gives only
an approximated solution, it guarantees that its
error converges to 0 as the adjustable parameter
of the algorithm goes to infinity. Note that an
algorithm based on the similar idea has been also
proposed in (Ohtsuka, 2004) for nonlinear MPC;
however, its approach solves a two point boundary
value problem at each step, and needs to add
some heuristic cost function to the original cost
function. Thus, it is quite different from that of
the proposed algorithm. It is shown by a numerical
example that the proposed algorithm solves 30
times faster than the static algorithm based on
the Lemke method at 100-step prediction horizon.

In the sequel, the following notation is used. The
symbols I,O and 0 denote an identity matrix, a
zero matrix, and a zero vector of proper dimen-
sion, respectively. For a vector x (or a matrix A),
’x ≥ 0’ (’A ≥ 0’) means that every element of x
(A) is greater than or equal to 0. The symbol aij

denotes the (i, j)-th element of a matrix A, and xi

or (x)i denotes the i-th row of a vector x. Denote
by Ai or (A)i the i-th row of a matrix A, and by
Aαβ a minor matrix of A, which is defined by the
index sets α := {i1, · · · , ir}, β := {j1, · · · , jr} and
composed of {i1, · · · , ir}-th rows, {j1, · · · , jr}-th
columns of a matrix A. Furthermore, a difference
set between α and β is denoted by α \ β, and a
complement set of a subset α on the index set αall

is denoted by αC := αall \ α.

2. PROBLEM FORMULATION

Consider an input-constrained discrete-time linear
system given by

xt+1 = Axt + But (1)

−w− ≤ ut ≤ w+ (2)

where, xt ∈ Rn,ut ∈ Rm are the state and the
input at t-step, respectively, A ∈ Rn×n and B ∈
Rn×m are constant matrices, and each element
w−

i , w+
i (i = 1, . . . , m) of w−, w+ is a positive

constant.

On the MPC method, a finite-time optimal con-
trol problem is solved at the current step t = k,
and only the first element u∗

k of an optimal in-
put sequence [u∗

k, u∗
k+1, . . . , u

∗
k+Np−1] obtained as

a solution to the problem is applied to the system,
where Np denotes a length of prediction horizon.
Thus, we only have to focus on the finite-time
optimal control problem as follows.

Problem 1. Suppose that the system of (1),(2)
and the state xk are given at t = k. Then find
an input sequence u∗

k, . . . , u∗
k+Np−1 minimizing

J(xk, uk, uk+1, . . . , uk+Np−1) =

x�
k+Np

Qfxk+Np +
k+Np−1∑

t=k

[x�
t Qxt + u�

t Rut]

where Q, Qf ∈ Rn×n are positive semi-definite,
and R ∈ Rm×m is positive definite. �

Letting

H :=Γ�
Np
QΓNp +R ∈ RmNp×mNp ,

F :=Ψ�
Np
QΓNp ∈ Rn×mNp ,

Q :=diag[Q, . . . , Q, Qf], R :=diag[R, . . . , R, R],

ΨNp :=




A
A2

...
ANp


 , ΓNp :=




B O · · · O
AB B · · · O
...

. . .
. . .

...
ANp−1B · · ·ABB


 ,

Uk :=[u�
k , u�

k+1, . . . , u
�
k+Np−1]

� ∈ RmNp ,

G :=
[

I
−I

]
∈ R2mNp×mNp , W̄ :=

[
W+

W−

]
∈R2mNp ,

W+ :=[w+
1 · · ·w+

m| · · · |w+
1 · · ·w+

m]� ∈ RmNp ,

W− :=[w−
1 · · ·w−

m| · · · |w−
1 · · ·w−

m]� ∈ RmNp ,

Problem 1 is rewritten as the following QP prob-
lem.

Problem 2. Suppose that xk is given at t = k.
Then find an input vector U∗

k minimizing the cost
function J(xk, Uk) given by

J =
1
2
U�

k HUk + x�
k FUk s.t. GUk ≤ W̄ . �

Furthermore, Problem 2 is reduced into the follow-
ing equivalent LC problem by the KKT-condition.

Problem 3. Suppose that xk is given at t = k.
Then find a pair of vectors δk, λk ∈ R2mNp

satisfying

δk = K̄λk + q(xk), q(xk) := S̄xk + W̄ (3)

δk ≥ 0, λk ≥ 0, (δk)i(λk)i = 0 ∀i ∈ I (4)

where

K̄ := GH−1G�=
[

K−K
−K K

]
, S̄ :=

[
S
−S

]
, (5)

K := H−1, S := H−1F�, I = {1, · · · , mNp}. �

δ∗k, λ∗
k denote an exact solution for Problem 3.

Each element of δk, λk is usually called the com-
plementarity variable. Since δk is obtained by xk

and λk, we can consider only λ∗
k as a solution.

If δk ≥ 0, λk ≥ 0 hold, then it is called “λk is
feasible” and if (δk)i(λk)i = 0 ∀i ∈ I hold, then
it is called “λk is complementary”(R. W. Cottle
and Stone, 1992). An exact solution of the LC-
problem is a feasible and complementary vector
λk. For simplicity, the symbol LCP(q(xk), K̄) is
used as the LC-problem of (3)-(5) with q(xk), K̄.

Since Problem 2 is equivalent to Problem 3, U∗
k is

rewritten by xk and λ∗
k as follows.

U∗
k = −(H−1F�xk + H−1G�λ∗

k).

Then u∗
k is obtained by

u∗
k = [Im O] U∗

k = −(F1xk + F2λ
∗
k), (6)

where F1 := [Im O]H−1F�, F2 := [Im O]H−1G�.

Now, substituting (6) to (1), the closed loop sys-
tem in MPC is obtained as follows (A. Bemporad
and Schutter, 2002).

Definition 1. (Discrete time -LC system)



xt+1 = Āxt+B̄λt

δt = K̄λt + q(xt)
δt ≥ 0, λt ≥ 0, (δt)i(λt)i = 0 ∀i ∈ I

(7)

where m′ := mNp, Ā := A − BF1 ∈ Rn×n,
B̄ := −BF2 ∈ Rn×2m′

, I = {1, · · · , m′}. �

Thus the MPC problem for the system of (1), (2)
is reduced into the following trajectory generation
problem of the D-LC system.

Problem 4. Suppose that a solution (xk−1, λ
∗
k−1,

δ∗k−1) of the system (7) at t = k−1 is given. Then
find a solution (xk, λ∗

k, δ∗k) at t = k. �

For Problem 4, xk−1, λ
∗
k−1 leads to xk by virtue

of the first equation of (7). Furthermore, δ∗k is
obtained by xk and λ∗

k. Thus, we only have to
find λ∗

k for generating a solution trajectory of (7).

2.1 Mathematical preliminaries

We define some symbols used in this paper.

Definition 2. A class of n × n real matrices for
which every principal minor is positive (non-
negative) is denoted as P(P0). The matrix A ∈
P(P0) is called a P (P0)-matrix. �

An inverse matrix of a P -matrix is also a P -
matrix, and a positive definite symmetry matrix
is a P -matrix．Furthermore, by the property of
eigenvalues of a positive semi-definite matrix and
a positive definite matrix, the symmetry matrix
H in Problem 2 is positive definite. In summary,
the following equations hold.

H ∈ P , K = H−1 ∈ P . (8)

Thus, Problem 2 is the strictly convex QP prob-
lem and it is known that there exists a unique
solution for LCP(q(xk), K̄) characterized by (5),
(8) and for all q(xk) (Y. J. Lootsma and Çamlıbel,
1999)．

Definition 3. For an arbitrary pair of vectors
(λ, δ), the index sets α, β, γ are defined as

α:={i ∈ I| (λ)i > (δ)i} (9)

β :={i ∈ I | (λ)i = (δ)i}, (10)

γ :={i ∈ I | (λ)i < (δ)i}. (11)

By definition, I = {α∪β∪γ} holds. The index sets
for (λk, δk) at k-step are expressed as αk, βk, γk,

and the index sets for some vector (λ̃, δ̃) are
expressed as α̃, β̃, γ̃. For simplicity, we omit their
subscript k as α, β, γ as long as it is not confusing.

Definition 4. For index sets α, β, γ, the following
permutation between λ and λ̂ is defined. The
permutation of ’λ → λ̂’ is called ’forward per-
mutation’, and ’λ ← λ̂’ is also called ’backward
permutation’. �

λ =




λ1

...
λ2m′




FWD
−→
←−

BWD


λα

λβ

λγ


 =: λ̂

Remark 1. The permutation between δ and δ̂ is
defined in the same way, and a matrix M is also
suitably permuted. This type of permutation does
not change the property of a P (P0)-matrix, i.e.,
M ∈ P(P0)⇔ M̂ ∈ P(P0) holds. In addition, the
LC-problem does not lose any generality under
this permutation. So we will use λ and λ̂ as the
same vector as long as it is not confusing. �

In addition, we define a novel term for a solution,
which is useful for discussion hereafter.

Definition 5. Suppose that a pair of vectors (λ, δ)
satisfies the following equations

λ ≥ 0, (λ)i(δ)i = 0 ∀i ∈ I. (12)

Then it is called “λ is semi-complementary”. �

3. DIFFERENCE BASED EFFICIENT
APPROXIMATE ALGORITHM

The conventional static algorithm solves LCP
(q(xk), K̄) at each k-step, not exploiting the infor-
mation on the solution at the previous step, which
is available at k-step. In order to derive an algo-
rithm that fully exploits the previous information,
we show the following theorems.

Theorem 1. Suppose that a solution (xk−1, λ
∗
k−1,

δ∗k−1) of (7) at k − 1 step is given. Define the
difference vector ∆x := xk−xk−1, the index sets
αk−1, βk−1, γk−1 corresponding to (λ∗

k−1, δ
∗
k−1),

and the following linear function;

Λ̄(αk−1, ∆xk) :=
[
Λ(αk−1, ∆xk)

0αC
k−1

]
, (13)

where Λ(αk−1, ∆xk) :=−(K̄αk−1αk−1)
−1S̄αk−1∆xk,

K̄αk−1αk−1 is nonsingular.

Furthermore, consider (λ̃, δ̃) given by

λ̃=λ∗
k−1 + Λ̄(αk−1, ∆xk), δ̃ = K̄λ̃ + q(xk)(14)

and compute the index sets α̃,β̃ from (λ̃, δ̃). Then
if α̃ = αk−1, β̃ = βk−1 = ∅ hold, a pair of
vector (λ̃, δ̃) is equivalent to an exact solution to
LCP(q(xk), K̄), i.e., λ∗

k = λ̃ and δ∗k = δ̃ hold.

The proof is omitted due to the limited space.
We call the linear function (13) as the Differ-
ence Value Function (DVF) hereafter. The non-
singularity of K̄αk−1αk−1 will be shown in Lemma
1. Theorem 1 shows that an exact solution of the
LC-problem is obtained by adding a DVF, under
some conditions. The DVF is based on the stabil-
ity and the differentiability of a solution for the
LC problem. See (R. W. Cottle and Stone, 1992)
for the details of these properties. Next, we prove
that K̄αk−1αk−1 of (13) is nonsingular.

Lemma 1. Suppose that (8) holds and index sets
α, β are given for a pair of vector (λ, δ) satisfying
(12). Then, for every index set ξ ⊆ {α ∪ β}, the
matrix K̄ξξ is a P -matrix.

The proof is omitted due to the limited space.
Since K̄αk−1αk−1 is a P -matrix by Lemma 1, it
is obviously nonsingular. On the other hand, if
α̃ = αk−1, βk−1 = ∅ do not hold, it is easily
shown that a pair of (λ̃, δ̃) is not feasible by the
definition of each index set. However, an error is
expected to be smaller as ∆x is smaller, since the
DVF given by (13) is a linear function of ∆x.
Based on this idea, we propose an approximate
algorithm as follows, where a scaling of ∆x is
changed according to variation of an index set α.

Proposed algorithm (DBA)
[Main routine]
[Step 0] (Initialization) Given x0, (λ∗

0, δ
∗
0), pos-

itive integers ν1, ν2. Calculate x1 = Āx0 + B̄λ∗
0,

k = 1, (λ0, δ0) = (λ∗
0, δ

∗
0). Then go to [Step 1].

[Step 1] Define ∆xk :=xk − xk−1, small intervals
d(1), d(2), . . . d(ν1) such that

d(�1) :=
[
xk−1+

	1−1
ν1

∆x, xk−1+
	1

ν1
∆x

]
.

Also define index sets α̃(�1,1), β̃(�1,1), γ̃(�1,1) at the
left end point of each d(�1), index sets α̃(ν1+1,1),
β̃(ν1+1,1), γ̃(ν1+1,1) at the right end point of d(ν1).
Calculate λ̃(1,1) = λk−1, δ̃(1,1) = δk−1, α̃(1,1) =
αk−1, and β̃(1,1) = βk−1. Substitute 	1 = 1 and go
to [Step 2].

[Step 2] Branch as follows.
(i) If α̃(�1,1) = β̃(�1,1) = ∅, then calculate
λ̃(�1+1,1) = 0, δ̃(�1+1,1) = q(xk−1 + (1/ν1) · ∆xk)
and go to [Step 4].
(ii) If β̃(�1,1) �= ∅, then update β̃(�1,1)←∅, α̃(�1,1)←
{α̃(�1,1) ∪ β̃(�1,1)} and go to [Step 2]-(iii).
(iii) If α̃(�1,1) �= ∅, β̃(�1,1) = ∅, then calculate

λ̃(�1+1,1)=λ̃(�1,1) + Λ̄(α̃(�1,1), (1/ν1) ·∆xk),

δ̃(�1+1,1)=K̄λ̃(�1+1,1) + q(xk−1 + (1/ν1) ·∆xk),

and go to [Step 3].

[Step 3] For brevity of notation, α̃(�1,1) is denoted
as α̃, and the complement set of α̃ as α̃C here.
Update elements whose index belongs to α̃ as

(λ̃(�1+1,1))α̃←(λ̃(�1+1,1))α̃−(K̄α̃α̃)−1(δ̃(�1,1))α̃.

Then calculate

δ̃(�1+1,1)=K̄λ̃(�1+1,1) + q(xk−1 + (1/ν1) ·∆xk),

and go to [Step 4].

[Step 4] Calculate α̃(�1+1,1), β̃(�1+1,1) by λ̃(�1+1,1),
δ̃(�1+1,1). Then branch as follows.
(i) If {α̃(�1+1,1) ∪ β̃(�1+1,1)} = α̃(�1,1), then go to
[Step 5].
(ii) If {α̃(�1+1,1)∪ β̃(�1+1,1)} �= α̃(�1,1), then go to
[Subroutine]. Note that α̃(�1,1) in this step has
been updated in [Step 2].

[Step 5] Branch as follows.
(i) If 	1 < ν1, then update 	1 ← 	1 + 1 and go to
[Step 2].
(ii) If 	1 = ν1, then calculate λk = λ̃(ν1+1,1) and
go to [Step 6].

[Step 6] Calculate

xk+1 = Āxk + B̄λk, δk = K̄λk + q(xk)

Then update k ← k + 1 and go to [Step 1]. �

[Subroutine]
[Step S-0] (Initialization) λ̃(�1,1), δ̃(�1,1), α̃(�1,1),
β̃(�1,1) are given by [Step 4] in the main routine.
Define ν̄ := ν1ν2, small intervals d(�1,1) · · ·
d(�1,�2)· · · d(�1,ν2) such that

d(�1,�2) :=
[
xk−1+(

	1−1
ν1

+
	2−1
ν2

)∆x,

xk−1+(
	1−1
ν1

+
	2

ν2
)∆x

]
.

Define index sets α̃(�1,�2), β̃(�1,�2) at the left
end point of each d(�1,�2), index sets α̃(�1,ν2+1),
β̃(�1,ν2+1) at the right end point of d(�1,ν2) and
also (λ̃(�1,�2), δ̃(�1,�2)), which is solution candidate
for LCP(q(xk−1 + (�1−1

ν1
+ �2−1

ν2
) · ∆x), K̄). Then

calculate 	2 = 1 and go to [Step S-1].

[Step S-1] Update β̃(�1,�2)←∅, α̃(�1,�2)←{α̃(�1,�2)∪
β̃(�1,�2)}. Then calculate Λ̄(α̃(�1,�2), (1/ν̄)∆xk),

λ̃(�1,�2+1)=λ̃(�1,�2) + Λ̄(α̃(�1,�2), (1/ν̄)∆xk),

δ̃(�1,�2+1)=K̄λ̃(�1,�2+1)+q(xk−1+(
	1−1
ν1

+
	2

ν2
)∆xk),

and go to [Step S-2].

[Step S-2] Branch as follows.
(i) If λ̃(�1,�2+1) ≥ 0, then go to [Step S-4].
(ii) If ∃i, s.t. (λ̃(�1,�2+1))i < 0, then update
(λ̃(�1,�2+1))i

← 0, α̃(�1,�2) ← α̃(�1,�2) \ {i} for all
i s.t. (λ̃(�1,�2+1))i < 0, and go to [Step S-3].

[Step S-3] For brevity of notation, α̃(�1,�2+1) is
denoted as α̃ here.
Update elements whose index belongs to α̃ as

(λ̃(�1,�2+1))α̃← (λ̃(�1,�2+1))α̃−(K̄α̃α̃)−1(δ̃(�1,�2))α̃.

Then calculate

δ̃(�1,�2+1)=K̄λ̃(�1,�2+1)+q(xk−1+(
	1−1
ν1

+
	2

ν2
)∆xk),

and go to [Step S-2].

[Step S-4] Calculate α̃(�1,�2+1), β̃(�1,�2+1) by
λ̃(�1,�2+1), δ̃(�1,�2+1) and go to [Step S-5].

[Step S-5] Branch as follows.
(i) If 	2 < ν2, then update 	2 ← 	2 + 1 and
go to [Step S-1]. (ii) If 	2 = ν2, then calcu-
late λ̃(�1+1,1) = λ̃(�1,ν2+1), α̃(�1+1,1) = α̃(�1,ν2+1) ,
β̃(�1+1,1) = β̃(�1,ν2+1) and go to [Step 5] in [Main
routine]. �

The initial solution (λ∗
0, δ

∗
0) can be obtained in

advance by solving LCP(q(x0), K̄) by means of
the conventional LC solvers. The iteration loop
operation in the subroutine ([Step S-2] and [Step
S-3]) terminates at most finite times, since the
cardinality of α̃(�1,�2) is finite and it is monotoni-
cally non-increasing. We can set positive integers
ν1, ν2 as the designed parameters. The proposed
algorithm replaces ∆x in the DVF by (1/ν1)∆x,
when index sets at both end points of d(�1) are the
same. On the other hand, in the case that index
sets are different, it replaces ∆x in the DVF by
the smaller value (1/ν̄)∆x to decrease an error of
an approximated solution. Next, we prove that an
approximated solution obtained by the proposed
algorithm converges to an exact solution as ν1, ν2

go to infinity. However, we show only a sketch of
proof due to the limited space.

Theorem 2. Suppose that the initial solution (x0,
λ∗

0, δ
∗
0) are given for system (7). For a solution

(xk, λ̃k, δ̃k), which is obtained by the proposed
algorithm at any step k, the following relations
hold.

ν̄→∞⇒ ‖λ∗
k−λ̃k‖∞→0, ‖δ∗k−δ̃k‖∞→0,(15)

where (λ∗
k,δ∗k) expresses an exact solution of

LCP(q(xk), K̄).

(Sketch of Proof) At first, The following state-
ment (i),(ii) hold as the general property of a
solution obtained by the proposed algorithm.

(i) Suppose that λ̃(�1,1) given at [Step 2] is semi-
complementary. Then λ̃(�1+1,1) obtained at [Step
5] is also semi-complementary.

(ii) For a vector λ̃, which is semi-complementary,
an error bound between λ̃ and λ∗

k is given by
‖λ∗

k−λ̃‖∞≤µk‖[δ̃−]‖∞, where δ̃ := K̄λ̃+q(xk), δ̃−

is a vector that is composed of negative elements
of δ̃, and µk is a positive scalar depending on q(xk)
and K̄.

Next, by (i) and Theorem 1,the case of obtaining
an exact solution is shown as follows.

(iii) If [Step 4]-(i) holds, a solution obtained at
[Step 5] is an exact solution.

On the other hand, if [Step 4]-(ii) holds, an ap-
proximated solution is obtained at [Step 5] via the
subroutine. Thus, first, let us consider the error
bound for the solution obtained at [Step S-5] in
the subroutine.

(iv) Suppose that λ̃(�1,�2), which is given at
[Step S-1], is semi-complementary and satisfies
ν̄ → ∞ ⇒ ‖δ̃−(�1,�2)

‖∞ → 0. Then λ̃(�1,�2+1)

at [Step S-5] is semi-complementary and satisfies
ν̄ →∞⇒ ‖δ̃−(�1,�2+1)‖∞ → 0.

The statement (iv) recursively holds from 	2 = 1
to 	2 = ν2, thus the following statement holds.

(v) Suppose that λ̃(�1,1) is semi-complementary
and satisfies ν̄ → ∞ ⇒ ‖δ̃−(�1,1)‖∞ → 0. If

[Step 4]-(ii) holds, then λ̃(�1+1,1) at [Step 5] is
semi-complementary and satisfies ν̄ → ∞ ⇒
‖δ̃−(�1+1,1)‖∞ → 0.

In summary, either of the statement (iii) or (v)
recursively holds from 	1 = 1 to 	1 = ν1. Thus the
following statement holds.

(vi) If λ̃k is semi-complementary and satis-
fies ν̄ → ∞ ⇒ ‖δ̃−(k,1)‖∞ → 0, λ̃k+1 is also
semi-complementary and satisfies ν̄ → ∞ ⇒
‖δ̃−(k+1,1)‖∞ → 0.

Since (λ∗
0, δ

∗
0) is given by assumption, finally, we

have (15) for arbitrary k. �

4. EXAMPLE

In this section, the proposed algorithm is applied
to a numerical example to show its efficiency.
Consider the continuous-time input-constrained
linear system given by

ẋ=Acx + Bcu, |u1| ≤ 0.025, |u2| ≤ 0.01,

Ac =




0 0 1 0
0 0 0 1
−25 25 −1/2 1/6
300 −300 2 −2


 , Bc =




0 0
0 0
1 −1
0 1


 ,

which models a kind of 2-d.o.f. positioning system
(see Fig. 1). The discrete-time linear system is
obtained by discretization with a sampling time
Ts = 0.05 [sec]. We set Q, R as the following
matrices:

C̃ =
[
0 2 0 0

]
, Q = C̃�C̃, R =

[
0.1 0
0 0.2

]
,

and use a solution for the discrete Riccati equa-
tion as a terminal weight cost function Qf . The
purpose of this problem is to drive the given ini-
tial state to an equilibrium state. The prediction
horizon Np is given as Np ∈ [10, 100], and the
initial state is given as x0 = [0.1,−0.25, 0, 0]�.

u1 u2

x1 x2

Mass 1

Mass 2

Fig. 1. Two-cart positioning system

This simulation is executed on Matlab 6.1 in a PC
with Intel Pentium-M 1.60GHz CPU and a 1GB
RAM. Fig. 2 shows trajectories of inputs (u1, u2),
variation of an error (e1(k) = ‖λ∗

k − λk‖∞) and
trajectories of states (x1, x2) at Np = 40 and
[ν1, ν2] = [7, 7]. In this case, both inputs satisfy
upper and lower constraints and an error is almost
vanished. On the other hand, if [ν1, ν2] = [2, 2]
is chosen, the error becomes O(10−3), where the
input and position trajectories are still be sim-
ilar to those in Fig. 2. The Worst Computa-
tional Time (W.C.T.) is compared in Fig.3, among
the Matlab-QP solver, the Lemke method based
solver, and two kinds of the proposed algorithm
“DBA”. The W.C.T. of the proposed algorithm at
Np = 100 is about 220 [msec] for DBA ([ν1, ν2] =
[2, 2]) and 1030[msec] for DBA ([ν1, ν2] = [7, 7]),
respectively. Thus, in the case of [ν1, ν2] = [2, 2],
it is 30 times faster than the the Matlab-QP or
the Lemke method based solver. It is also shown
that the W.C.T. of DBA does not increase at so
high rate as the prediction horizon increases. In
addition, since the source code of the proposed
algorithm is written in the M-file format, we can
expect to improve the W.C.T., if we use some
compiler code.

5. CONCLUSION

This paper has proposed an efficient on-line com-
putation algorithm for solving the MPC problem
of input-constrained linear systems, which can
efficiently solve the LC-problem that changes ac-
cording to the linear dynamics, by fully exploiting
the information on the solution at the previous
step. It has been further proved that an approxi-
mated solution converges to an exact solution as
some specified parameter goes to infinity. Finally,
it has been shown by a numerical example that
the proposed algorithm is more efficient than the
Lemke method at a large prediction horizon.

REFERENCES

A. Bemporad, M. Morari, V. Dua and E. N.
Pistikopoulos (2002). The explicit linear
quadratic regulator for constrained systems.
Automatica 38,No.1, 3–20.

A. Bemporad, W. P. M. H. Heemels and B. D.
Schutter (2002). On hybrid systems and
closed-loop systems. IEEE Trans. on Auto-
matic Control 47,No.5, 863–869.

Camacho, E. F. (1993). Constrained general-
ized predictive control. IEEE Trans. of AC
38,No.2, 327–332.

Maciejowski, J. M. (2002). Predictive control
with Constraints. Pearson Education Limited.
Harlow.

Ohtsuka, T. (2004). A continuation/GMRES
method for fast computation of nonlin-
ear receding horizon control. Automatica
40, 563/574.

R. W. Cottle, J. S. Pang and R. E. Stone (1992).
The Linear Complementarity Problems. Aca-
demic Press. San Diego.

Saitou, Y. and J. Imura (2004). An M -matrix
based efficient algorithm for model predictive
control of input constrained linear systems.
Proc. of Symposium on Large Scale Systems
pp. 777–782.

Y. J. Lootsma, A. J. van der Schaft and M. K.
Çamlıbel (1999). Uniqueness of solutions of
linear relay systems. Automatica 35, 467/478.

0 2 4 6

-0.02

0

0.02

In
pu
t

u
1
u
2

0 2 4 6
0

2

4
x 10

-15

E
rr
or

e
1

0 2 4 6

0

0.1

0.2

0.3

Time [sec]

P
os
iti
on

x
1
x
2

Fig. 2. Solution Trajectory and Error of input
(Np =40, DBA(ν1 = 7, ν2 = 7))

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Worst Computation Time

Prediction Horizon

Ti
m
e
 [
m
s]

DBA(ν
1
=7, ν

2
=7)

DBA(ν
1
=2, ν

2
=2)

Lemke method base
Mat-lab QP

Fig. 3. Worst Computational Time vs Predic-
tion horizon (Matlab-QP, Lemke-method,
DBA(ν1 =2, ν2 =2), and DBA(ν1 =7, ν2 =7)

