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Abstract: We argue in this paper that the standard procedure used Passivity–
Based Controller (PBC) designs of splitting the control action into energy–shaping
and damping injection terms is not without loss of generality, and actually reduces
the set of problems that can be solved with PBC. Instead, we suggest to carry
out simultaneously both stages. As a case in point, we show that the practically
important example of the induction motor cannot be solved with a PBC in two
stages. It is, however, solvable carrying out simultaneously the energy–shaping and
the damping injection. The resulting controller is a simple output feedback scheme
that ensures global exponential convergence of the generated torque and the rotor
flux norm to their desired (constant) values. To the best of our knowledge, this is
the first output feedback scheme that ensures such strong stability properties for
this system. Copyright c©2005 IFAC
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1. INTRODUCTION

Passivity–based control (PBC) is a generic name
given to a family of controller design techniques
that achieve the control objective via the route of
passivation, that is, rendering the closed–loop sys-
tem passive with a desired storage function (that
usually qualifies as a Lyapunov function for the
stability analysis.) If the passivity property turns
out to be (output) strict, with an output signal
with respect to which the system is detectable,
then asymptotic stability is ensured. See the fun-
damental monograph (van der Schaft, 2000), and

1 This work has been partially supported by CONACyT
(41298Y) and DGAPA-UNAM (IN119003).

(Ortega and Garcia-Canseco, 2004) for a recent
survey.

As is well–known, (van der Schaft, 2000), a pas-
sive system can be rendered strictly passive sim-
ply adding a negative feedback loop around the
passive output—an action sometimes called LgV
control (Sepulchre et al., 1997). For this reason, it
has been found convenient in some applications, in
particular for mechanical systems (Takegaki and
Arimoto, 1981), (Ortega et al., 2002b), to split the
control action into two terms, an energy–shaping
term which, as indicated by its name, is responsi-
ble of assigning the desired energy/storage func-
tion to the passive map, and a second LgV term
that injects damping for asymptotic stability.



The purpose of this paper is to bring to the readers
attention the fact that splitting the control action
in this way is not without loss of generality, and
actually reduces the set of problems that can be
solved via PBC. This assertion is, of course, not
surprising since it is clear that, to achieve strict
passivity, the procedure described above is just
one of many other possible ways. The main objec-
tive of the paper is to show that the practically
important example of the induction motor cannot
be solved with a PBC in two stages. It is, however,
solvable carrying out simultaneously the energy–
shaping and the damping injection.

2. PBC WITH SIMULTANEOUS ENERGY
SHAPING AND DAMPING INJECTION

To be more specific let us consider the Inter-
connection and Damping Assignment (IDA) PBC
proposed in (Ortega et al., 2002a) applied to non-
linear systems of the form

ẋ = f(x) + g(x)u (1)

where x ∈ R
n is the state vector and u ∈ R

m, m <
n is the control action. In IDA–PBC stabilization
of an equilibrium is achieved assigning to the
closed–loop the form 2

ẋ = [Jd(x) −Rd(x)]∇xHd (2)

where Hd : R
n → R is the desired total stored

energy, that should satisfy

x� = arg minHd(x) (3)

with x� ∈ R
n the equilibrium to be stabilized, and

Jd(x) = −J�
d (x) and Rd(x) = R�

d (x) ≥ 0, which
represent the desired interconnection structure
and dissipation, respectively, are chosen by the
designer.

Fixing (for simplicity) a static state feedback
control u = û(x), and setting the right hand sides
of (1) and (2) equal we obtain

f(x) + g(x)û(x) = [Jd(x) −Rd(x)]∇xHd.

Under the assumption of full–rank g(x), reduces
to the well–known matching equation of IDA–PBC

g⊥(x)f(x) = g⊥(x) [Jd(x) −Rd(x)]∇xHd (4)

where g⊥(x) is a left annihilator of g(x), that is,
g⊥(x)g(x) = 0, and the control law expression

û(x) = [g�(x)g(x)]−1g�(x) × (5)

{−f(x) + [Jd(x) −Rd(x)]∇xHd}.

When the design is carried out in two stages we
first solve (4) with Rd(x) = 0. Then, we add

2 All vectors in the paper are column vectors, even the
gradient of a scalar function denoted ∇(·) = ∂

∂(·) .

to û(x) a damping injection term of the form
−Kdig

�(x)∇xHd, Kdi = K�
di > 0, which yields

the particular damping matrix

Rd(x) = g(x)Kdig
�(x).

In the next section we will show that, for the
problem of output feedback torque control of
induction motors with quadratic in the increments
desired energy function, it is not possible to solve
(4) with Rd(x) = 0. But the problem is solvable if
we allow for a general damping matrix.

3. INDUCTION MOTOR: MODEL AND
EQUILIBRIA

In this section the basic motor model and the
analysis of its equilibria are presented. The latter
is needed because, in contrast with the large
majority of controllers proposed for the induction
motor, we are interested in this paper in the
stabilization of a given equilibrium that generates
a desired torque and rotor flux amplitude.

3.1 Model

The standard three-phase induction motor rep-
resented with a two-phase model defined in an
arbitrary reference frame, which rotates at an
arbitrary speed ωs ∈ R, is given by (Krause et
al., 1995)

ẋ12 =− [γI + (ω + u3)J ] x12 +

+α1 (I − TrωJ )x34 + α2u12 (6)

ẋ34 =−(
1
Tr

I + J u3)x34 +
Lsr

Tr
x12 (7)

ω̇ = α3x
�
12J x34 − τL (8)

in which I ∈ R
2 is the identity matrix,

J =
[

0 −1
1 0

]
= −J�,

x12 ∈ R
2 are the stator currents, x34 ∈ R

2 the
rotor fluxes, ω ∈ R the rotor speed, u12 ∈ R

2 are
the stator voltages, τL ∈ R is the load torque and
u3 := ωs − ω. The parameters, all positive, are
defined as

γ :=
Rs

Lsσ
+

Lsr

σLsLrTr
; σ := 1 − L2

sr

LsLr

α1 :=
Lsr

σLsLrTr
; α2 :=

1
σLs

α3 :=
Lsr

Lr
; Tr :=

Lr

Rr

with Ls, Lr the windings inductances, Rs, Rr the
windings resistances and Lsr the mutual induc-
tance. Notice that, without loss of generality, the
rotor moment of inertia and the number of pole
pairs are assumed equal to one.



As first pointed out in the control literature in
(Ortega and Espinosa, 1993), the signal u3 (equiv-
alently ωs) effectively acts as an additional control
input. Below, we will select u3 to transform the
periodic orbits of the system into constant equi-
libria.

3.2 Controlled Outputs and Equilibria

We are interested in this paper in the problem of
regulation of the motor torque and the rotor flux
amplitude, that we denote,

y1 = h1(x) = α3x
�
12J x34

y2 = h2(x) = |x34| (9)

respectively, to some constant desired values y� =
[y1�, y2�]�, where we defined x� :=

[
x�

12, x
�
34

]
. To

solve this problem using IDA–PBC it is necessary
to express the control objective in terms of a
desired equilibrium. We make at this point the
following important observation:

• From (8) we see that to operate the system in
equilibrium, y1� = τL—hence, the load torque is
assumed known. See, however, Remark 1.

As is well–known (Marino et al., 1999), the zero
dynamics of the induction motor is periodic, a fact
that is clearly shown computing the angular speed
of the rotor flux. Towards this end, we define the
rotor flux angle ρ := arctan x4

x3
, and evaluate 3

ρ̇ = Rr
y1

y2
2

− u3,

from which have the following simple lemma
whose proof is obtained via direct substitution.

Lemma 1. Consider the induction motor model
(6)–(8) with u3 fixed to the constant

u3 = u3� := Rr
y1�

y2
2�

. (10)

Then, the set of assignable equilibrium points,
denoted [x̄, ω̄]� ∈ R

5, which are compatible with
h(x̄) = y� is defined by ω̄ ∈ R and

x̄12 =
1

Lsr


 1 −Lr

y1�

y2
2�

Lr
y1�

y2
2�

1


 x̄34

|x̄34|= y2� (11)

�

Among the set of assignable equilibria defined
above we select, for the electrical coordinates,

3 From this relation it is clear that, if u3 is fixed to a
constant, say ū3, and y = y�, x34 is a vector of constant
amplitude rotating at speed ρ(t) = (Rr

y1�

y2
2�

− ū3)t + ρ(0).

the one that ensures field orientation (Krause et
al., 1995) and denote it

x� := [
−Lr

Lsr

y1�

y2�
,
y2�

Lsr
, 0, y2�]�. (12)

Remark 1. In practical applications an outer loop
PI control around the velocity error is usually
added. The output of the integrator, on one hand,
provides an estimate of τL while, on the other
hand, ensures that speed also converges to the
desired value as shown via simulations in Section
6.

4. IDA–PBC OF INDUCTION MOTOR

The following important aspects of the induction
motor control problem are needed for its precise
formulation:

• The only signals available for measurement are
x12 and ω.

• Since we are interested here in torque control,
and this is only defined by the stator currents and
the rotor fluxes, its regulation can be achieved
applying IDA–PBC to the electrical subsystem
only. Boundedness of ω will be established in a
subsequent analysis.

Although with IDA–PBC it is possible, in princi-
ple, to assign an arbitrary energy function to the
electrical subsystem, we will consider here only a
quadratic in errors form

Hd(x) =
1
2
x̃�P x̃, (13)

with x̃ := x − x� and P = P� > 0 a matrix
to be determined. As first observed in (Fujimoto
and Sugie, 2001), fixing Hd(x) transforms the
matching equation (4) into a set of algebraic
equations—see also (Rodriguez and Ortega, 2003)
for application of this, so–called “Algebraic IDA–
PBC”, to general electro–mechanical systems.

The electrical subsystem (6)–(7) with u3 = u3�

can be written in the form

ẋ = f(x, ω) +
[ I

02×2

]
u12.

Therefore, the matching equation (4) concerns
only the third and fourth rows of f(x, ω) and it
takes the form

(− 1
Tr

I+J u3�)x34+
Lsr

Tr
x12 = [F3(x) F4(x)]P x̃,

(14)
where, to simplify the notation, we define the
matrix

F (x) := Jd(x) −Rd(x),
that we partition into 2 × 2 sub-matrices as

F (x) =
[

F1(x) F2(x)
F3(x) F4(x)

]
. (15)



The output feedback condition imposes an addi-
tional constraint that involves now the first and
second rows of f(x, ω). Indeed, from (5) we see
that the control can be written as

u12 = û12(x12, ω) + S(x, ω)x34

where û12(x12, ω) is given in (24) and we have
defined

S(x, ω) :=
α1

α2
(TrωJ − I)+

1
α2

[F1(x)P2 + F2(x)P3] ,

(16)
with P partitioned as

P :=
[

P1 P2

P�
2 P3

]
; Pi ∈ R

2×2, i = 1, 2, 3.

It is clear that S(x, ω) has to be set to zero to
satisfy the output feedback condition.

We thus have the following:

IDA–PBC Problems. Find matrices F (x) and
P = P� > 0 satisfying (14) and S(x, ω) = 0 with
the additional constraint that

• (Energy–shaping)

F (x) + F�(x) = 0, (17)

or the strictly weaker

• (Simultaneous energy–shaping and damping
injection)

F (x) + F�(x) ≤ 0. (18)

�

5. MAIN RESULTS

5.1 Solvability of the IDA–PBC Problems

Proposition 1. The energy–shaping problem is
not solvable. However, the simultaneous energy–
shaping and damping injection one is solvable.

Proof. First, we write the matching equation (14)
in terms of the errors as

Lsr

Tr
x̃12−

(
1
Tr

I + u3�J
)

x̃34 = [F3(x) F4(x)]P x̃,

which will be satisfied if and only if

[F3(x) F4(x)]P = [
Lsr

Tr
I −

(
1
Tr

I + u3�J
)

].

(19)
Since P and the right hand side of the equation
are constant, and P is full rank, we conclude
that F3 and F4 should also be constant. (To
underscore this fact we will omit in the sequel
their argument.)

Let us consider first the energy–shaping problem.
From (15) and (17) we have that F2 = −F�

3 .

Then, setting (16) to zero and replacing the latter
it is obtained that

F1(x)P2 − F�
3 P3 = α1 (I − TrωJ ) (20)

On the other hand, from the first two columns of
(19) it follows that

F3 =
(

Lsr

Tr
I − F4P

�
2

)
P−1

1 (21)

Substitution of (21) into (20) leads to

F1(x)P2 − P−1
1

(
Lsr

Tr
I − P2F

�
4

)
P3 =

= α1I − α1TrωJ
(22)

Invoking again (17) we have that F1(x) must be
skew-symmetric, that without loss of generality
we can express in the form

F1(x) = β1(x)J + β2J ,

where β2 ∈ R. Looking at the x–dependent terms
we get

β1(x)JP2 + α1TrωJ = 0,

which can be achieved only if P2 = λI, with
λ ∈ R, and β1(x) = −λ−1α1Trω.

The constant part of (22), considering that P2 =
λI, reduces to

λβ2J − P−1
1

(
Lsr

Tr
I − λF�

4

)
P3 = α1I

which—using the fact that P3 is full rank—can be
expressed as F�

4 = GP−1
3 , where we have defined

the constant matrix

G :=
1
λ

[
Lsr

Tr
P3 + P1 (α1I − λβ2J )

]

Finally, since F4 must also be skew–symmetric, we
have that

G = P−1
3 (−G�)P3,

i.e., G must be similar to −G�, and consequently
both have the same eigenvalues. A necessary con-
dition for the latter is that trace(G) = 0, that is
not satisfied because

trace(G) =
1
λ


Lsr

Tr
trace(P3)︸ ︷︷ ︸

>0

+α1 trace(P1)︸ ︷︷ ︸
>0


 ,

which is different from zero. This completes the
proof of the first claim.

We will now prove that if we consider the largest
class of matrices (18) the problem is indeed solv-
able, and actually give a very simple explicit ex-
pression for F (x) and P . For, we set P2 = 0, and
it is easy to see that

F2(x) = α1 (I − TrωJ )P−1
3

F3(x) =
Lsr

Tr
IP−1

1

F4(x) = −
(

1
Tr

I + u3�J
)

P−1
3

and F1(x) free provide a solution to (14) and make
(16) equal to zero. It only remains to establish



(18). For, we fix P1 = Lsr

Tr
I, P3 = α1I and

F1(x) = −K(ω), with K(ω) = K�(ω) > 0, then

F (x) =


−K(ω) I − TrωJ

I −α−1
1

(
1
Tr

I + u3�J
) 

 .

A simple Schur complement analysis shows that
F (x) + F�(x) < 0 if and only if

K(ω) >
Lsr

4 (LsLr − L2
sr)

[
T 2

r ω2 + 4
]I. (23)

�

5.2 Proposed Controller

Once the solvability of the problem with simulta-
neous energy–shaping and damping injection has
been established, the final part of the design is
the explicit definition of the resulting IDA–PBC
and the assessment of its stability properties. This
is summarized in the proposition below whose
proof follows immediately from analysis of the
closed–loop dynamics ẋ = F (x)∇Hd, with F (x)+
F�(x) < 0, and (8).

Proposition 2. Consider the induction motor model
(6)–(8) with outputs to be regulated given by (9).
Assume that

A.1 The measurable states are the stator cur-
rents x12 and the rotor speed ω.

A.2 All the motor parameters are known.
A.3 The load torque is constant and known.

Fix, the desired equilibrium to be stabilized as
(12), with y� = [τL, y2�]�, y2� > 0, and set
u3 = Rr

y1�

|y2
2�|

and u12 = û12(x12, ω) with

û12(x12, ω) =
1
α2

[γI + (ω + u3�)J ] x12 + (24)

+
α1

α2
(I − TrωJ )x34� − J x12 − Lsr

α2Tr
K(ω)x̃12]

with K(ω) satisfying (23). Then, the x–subsystem
admits a Lyapunov function

Hd(x) =
Lsr

2Tr
|x̃12|2 +

α1

2
|x̃34|2.

that satisfies Ḣd ≤ −κHd, for some κ > 0.
Consequently, for all initial conditions,

lim
t→∞x(t) = x�, lim

t→∞ y(t) = y�

exponentially fast. Furthermore limt→∞ ω(t) =
ω∞.

6. SIMULATION RESULTS

The performance of the proposed controller was
investigated by simulations considering two ex-
periments described below. The considered motor

parameters, taken from (Ortega and Espinosa,
1993), were Ls = 84mH , Lr = 85.2mH , Lsr =
81.3mH , Rs = 0.687Ω and Rr = 0.842Ω, with
an unitary rotor moment of inertia. Regarding
the controller parameters, following field oriented
ideas, the rotor flux equilibrium value was set to

x34� =
[

β
0

]

with β = 2, while x12� where computed according
to (11). In order to satisfy condition (23), it was
defined K = kI with

k =
Lsr

(LsLr − L2
sr)

[
T 2

r ω2 + 4
]

In a first experiment the motor was initially at
standstill with a zero load torque. At startup,
the load torque was set to τL = 20Nm and this
value was maintained until t = 40sec when a
new step in this variable was introduced changing
to τL = 40Nm. Figure 1 shows the behavior
of the stator currents where it can be noticed
how, according to the field oriented approach, one
of the stator currents remains (almost) constant
while the second one is dedicated to produce
the required generated torque. In this sense, in
Figure 2 it can be observed how the rotor flux
is aligned with the reference frame since one of
the components equals β while the other is zero.
The internal stability of the closed–loop system
is illustrated in Figure 3 where the rotor speed is
presented. As expected, besides its boundedness,
it can be noticed that when the load torque
is increased, this variable decreses. In Figure 4
the main objective of the proposed controller is
depicted. Here it is shown how the generated
torque regulation objective, both before and after
the load torque change, is achieved. Figure 5
shows the boundedness of the control (stator
voltages) inputs.

The second experiment was aimed to illustrate the
claim stated in Remark 1. In this sense, the control
input u3 was set to

u3 = û3� = Rr
ŷ1�

y2
2�

where the estimate of the load torque is obtained
as the output of a PI controller, defined over the
speed error between the actual and the desired
velocities, of the form

ŷ1� = kp (ω − ωd) + ki

∫
(ω − ωd) dt

Figure 6 shows the rotor speed behavior when the
desired velocity is (initially) ωd = 100rpm and
at t = 50sec it is changed to ωd = 150rpm. In
this simulation it was considered τL = 10Nm,
ki = −.1 and kp = −1. All the other parameters
were the same than in the first experiment.
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Fig. 1. Stator currents
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Fig. 2. Rotor fluxes
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Fig. 3. Rotor speed
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Fig. 4. Generated and load torque
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