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Abstract: A robust stabilisation problem using static output feedback is studied
for a class of linear systems with nonlinear disturbances. Two discontinuous output
feedback control schemes are synthesised: one is based on sliding mode control and
the other based on Lyapunov techniques. The output information appearing in the
nonlinear bounds is separated from the unmeasurable part and is directly used in
the control design to enhance robustness. The study in this paper shows the effects
on system stability from assuming bounds on the uncertainties.
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1. INTRODUCTION

Discontinuous control has been studied by many
scientists and engineers (Emelyanov et al., 1992;
Edwards and Spurgeon, 1998). One of the main
characteristics is that discontinuous control ex-
hibits good robust performance in the presence
of uncertainty. Moreover, sometimes the real sys-
tem can not be stabilised by continuous control
(Brocket, 1983). This shows that the study of dis-
continuous control is valuable and necessary not
only theoretically but also from the applications
perspective.

Real engineering systems unavoidably suffer from
a variety of uncertainties. In order to ensure the
system exhibits good performance in the presence
of disturbances it is necessary to design a robust
controller to reject the uncertainties. In much of
the existing work, it is required that the uncer-
tainty has a linear bound/linear growth condition
of the form allz|| + b. However, in practical sys-

tems, the bound may take a nonlinear form (Chen
and Pandey, 1990). Although sometimes it is pos-
sible to use a large linear bound to replace the
nonlinear one, this undoubtedly produces some
conservatism and also unnecessary control con-
sumption.

In static output feedback design, nearly all work
requires that the uncertainty bound is a func-
tion of the output (see, e.g (Emelyanov et al.,
1992; Zak and Hui, 1993; Benabdallah and Ham-
mami, 2001; Edwards and Spurgeon, 1995)). Re-
cently, some authors have tried to extend the
linear bounds on the uncertainties to nonlinear
bounds (Yan et al., 1998; Yan et al., 2004; Yan et
al., 2005). In sliding mode control, the matched
uncertainty is allowed to have nonlinear bounds
since the sliding motion is insensitive to matched
uncertainty (Edwards and Spurgeon, 1995). How-
ever, the case of nonlinear bounds on the mis-
matched uncertainty has rarely been considered
and in nearly all existing associated work, the



bounds on the mismatched uncertainty are not
fully exploited for controller design.

Output feedback control is much more compli-
cated than state feedback control since only par-
tial information is available. Indeed the funda-
mental question of the existence of a static output
feedback controller for a triple (4, B,C) is still
open even in the scalar case (Syrmos et al., 1997).
The focus of this paper is the study of robustness,
and two discontinuous output feedback control
schemes are presented for a class of systems with
nonlinear disturbances. Using the approach given
by (Edwards and Spurgeon, 1998), a sliding mode
control scheme based on (Yan et al, 2004) is
given where the mismatched uncertainty has a
nonlinear bound which is allowed to be a function
of the state variables. A Lyapunov controller is
presented which improves on the work in (Yan
et al., 1998). An approach for dealing with the
nonlinear bounds on both the matched and mis-
matched uncertainty is proposed when the bounds
can not be expressed as a function of the output
alone. By identifying the known information in
the nonlinear bounds and using it directly in the
control design, the robustness is enhanced and
the conservatism is reduced. Some discussions and
remarks are presented to show a comparison be-
tween the two approaches. It is shown that the
effect of the uncertainty on system stability is very
closely connected with whether the uncertainty
is matched or not and whether its bound can be
expressed as a function of the output.

Notation: In the sequel, for a matrix A, Im(A)
denotes the image (or range) of A and AM will
be used to denote its Moore-Penrose inverse. The
set of real numbers will be denoted by R, R
denotes the set {t | ¢t > 0}, and R"™*™ represents
the n x m matrix set with its elements defined in
R. The Lipschitz constant of a function f in its
domain of definition will be written L. Finally,
|| - || denotes the Euclidean norm or its induced
norm.

2. PRELIMINARIES

Consider an uncertain linear system

#(t) = Ax(t) + B(u + G(z,t)) + F(x,t) (1)
y(t) = Cu(t), (2)

where z € Q C R", u € R™, y € RP with m <
p < n are the state variable, input and output
respectively; (A, B,C) are constant matrices of
appropriate dimension with B and C' both being
of full rank; G(x,t) and F(x,t) are the matched
and mismatched uncertainties respectively, which
are continuous in their arguments.

It is assumed that there exist known continuous
functions ¢1, ¢a, 11 and 12 in Q x R™ such that
for (z,t) € A x R

Gz, DIl < ¢1(2,1) + P2(y, 1) (3)
1F(z, )l < (1) +92(y, 1) (4)

where ¢; and ¢y are Lipshitz in x € Q and
uniformly about ¢ € R*. Furthermore ¢;(0,%) =
#2(0,t) = ¥1(0,t) = 12(0,¢) = 0 for all t € R
which implies that z = 0 is an equilibrium point
despite the disturbances.

Remark 1. This paper focuses on the study of
discontinuous control, and thus the right hand
side of equation (1) is not continuous due to the
discontinuouity of the control u. As a result, the
classical solution of the equation no longer exists.
In this case, the solution of the equation is defined
in the Filippov sense (Filippov, 1983). This is
assumed throughout the paper.

Remark 2. From (3) and (4), it is observed that
both the matched and mismatched uncertainty
are allowed to have general nonlinear bounds,
and this framework includes all previous work
as special cases. Furthermore, the structure of
the uncertainties are not necessarily known. Only
their bounds are assumed to be known and will
be used in the control design.

Definition 1. The domain Q, (0 € Q, C Q)
is called a stabilised domain of system (1)—(2)
if in Q, there exist a Lyapunov function V(z,t)
and a control u(z,t) such that the time derivative
of V(x,t) along the corresponding closed-loop
system is negative definite in Q.

It should be pointed out that the stabilised do-
main defined here is different from the domain
of attraction (stability region) of the closed-loop
system.

The following assumptions will be imposed on the
system (1)—(2):

Assumption Al. rank(CB) = m.

Under Assumption Al, from (Edwards and Spur-
geon, 1998), there exists a nonsingular linear
coordinate transformation such that the triple
(A, B, C) with respect to the new coordinates has
the structure
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where A, € R(=m)x(n=m), By € R™*™ and
Cy € RP*P,

Assumption A2. The triple (Avl,gg,c_’g) with
Ca = [O(p—m)x(n—p) Ip—m] is output feedback
stabilisable.



From Assumption A2, there exists a matrix K
such that A; + A>KCs is stable. Therefore, for
@1 > 0, the following Lyapunov equation has a
unique solution P, > 0

A‘{Pl + P1A1 = _Ql- (6)

Remark 3. Assumptions A1l and A2 are used
to guarantee that there exists an output sliding
surface for the triple (4,B,C) (Edwards and
Spurgeon, 1998).

Assumption B1. There exists a matrix L such
that A — BLC is stable.

From Assumption B1, it follows that for Q5 > 0,
the Lyapunov equation

(A— BLC)" Py + Py(A— BLCO) = —Qs  (7)

has unique solution P, > 0.

Assumption B2. There exists a matrix H such
that B"P, = HC.

Assumption B3. Y C Im((H™)™) where H is
defined in Assumption B2 and Y =: {y | y =
Cz,z € R"} is the system output space.

In (Edwards and Spurgeon, 1998) it is argued
that a necessary condition for the existence of
an output sliding surface which provides a stable
sliding motion with a unique equivalent control
is that the triple (4,B,C) is minimum phase
and relative degree one. From (Gu, 1990), it is
seen that under the assumptions m = p and
rank(CB) = m, Assumptions Bl and B2 are
equivalent to the requirement that (4, B,C) is
minimum phase. The two sets of assumptions
A and B have been independently stated to be
consistent with the original work of (Edwards and
Spurgeon, 1998) and (Yan et al., 1998).

Lemma 1. In the case when m = p, Assumptions
B1-B3 are satisfied if Assumptions B1-B2 are
satisfied and H is nonsingular.

Proof: It is only required to prove that Assump-
tion B3 is satisfied.

From the nonsingularity of H, it is observed that
(H")™' = (H")™ and for any x € R"

y=Cr=(H") 'H Cz = (H")M(H"Cxz)
This shows that y € Im((H7)M). Hence the
conclusion follows. #

Lemma 1 shows that the conditions used in (Yan
et al., 1998) are stronger than the ones used here.

3. DISCONTINUOUS CONTROL DESIGN

In this section, two static output feedback con-
trollers are proposed for the system (1)—(2).

3.1 Sliding Mode Control Design

A control strategy for system (1)—(2) will be devel-
oped where the sliding surface given by (Edwards
and Spurgeon, 1998) is employed.

Under Assumptions Al and A2, it follows from
Remark 3 that there exists a sliding surface

o(z) =:Sx=:ECz =0 (8)

such that the nominal system (1)—(2) when re-
stricted to (8) gives a stable sliding motion.

Now the objective is to find the sliding mode
dynamics and study its stability in the presence of
uncertainty. From (Edwards and Spurgeon, 1998)
there exists a nonsingular coordinate transforma-
tion z = Tz such that in the new coordinates z,
system (1)—(2) has the following form

z:[ﬁ; ﬁﬂz+[£2] (u+G(T™'z,t)
+TF(T™'2,1), (9)
y=[0 C:]z (10)

where A; = le + EQKCQ is stable; By € R™>*™
and Cy € RP*P are both nonsingular. Further-
more, it can be shown that (Edwards and Spur-
geon, 1995)

E[0 Cy]=[0 E»] (11)
where Fy € R™*™ is nonsingular. In addition the
fact that

C=[0 C]T=0Cy[0 I,]T (12)

will be used.

In order to fully use the system structure, the
following partitions are introduced

2]

Tl =W, W] (14)

T

Co=[Cy Ca] (13)

where Ty € R—m)xn 1y, ¢ Rnx(n—m) and
Cy € RP*(P=m) Then, system (9)-(10) can be
rewritten as

31 =A12 + Aszo + TIF(T 71 2,1) (15)
2o = Asz1 + Ayzo + B> [u +G(T™ 'z, t)]

+ToF(T™ ' 2,t) (16)

y=Co1212 + Caa2o (17)

where z = col(z1,22) with z; € R™ ™ and z; =
col(z11, z12) with z17 € R™ P and 212 € RP™™.



Consider the sliding surface (8) in the new coor-
dinate system. From (11),

Sl’ZE[O CZ]Z:[O E2]|:§1:|:E222
2

where F- is nonsingular. The sliding surface (8)
in the new coordinates z becomes

20 =0 (18)

When system (15)-(17) is restricted to sliding
surface (18), the sliding motion is described by

z1= A1z +T1F(W12‘1,t) (19)

Obviously, the mismatched uncertainty F' affects
the dynamics of the sliding mode and may destroy
its stability. It is necessary to impose some con-
straints so that the stability of the sliding mode
dynamics are guaranteed. The following conclu-
sion can now be presented:

Proposition 1. Consider system (1)-(2). Under
Assumptions Al and A2, the sliding motion in
(19) is asymptotically stable if there exists a do-
main € of the origin in © such that for x € Q4 \
{0} and t € R"

1
[|27 P1T1||(1 (Wrz1,t) + ¥2(Ca1212,t)) < 5217@121 (20)

where P; and @) satisfy (6); and Cy; and T} are
given by (13)—(14).

Proof: Using (17) and (4), it is observed that

|F(Wyz1,t)]| <y (Whzy,t) + 2(Co1212,1) (21)

Then, for system (19), consider the Lyapunov
function candidate Vi(z1) = 2]Piz with P
satisfying (6). By direct computation, it follows
from (20) that the time derivative of V; along the
trajectories of systems (19) is negative definite.
Hence, the conclusion follows. #

Next it is required to design an output feedback
sliding mode control such that the system state is
driven to the sliding surface (8). Write

_ | (T2
Tx = [(T$)2
with (Tz); € R"P and T-! = [M; M,] with
M, € R"*("=P)_ Then, from (12)
1 | (T -
o [(c)] = M(T2) + MaCyly (22)
2 Y

Assume that || M;(T'x)1|| is bounded in 2 and that
p =: sup,cqil|Mi(Tz)||}. The following control
is proposed

E
u=—(SB)"LSAM,C5'y — (SB)~! ﬁ{

I1SBI| (¢ (MaCy 'y, 1) + ¢ (y, 1)) + IS]]
(B (MC5 g, 1) + a(y ) + k) (23)

where k is the control gain to be designed later.

Proposition 2. If || M1(Tz)1]| is bounded in ,
then, under Assumptions A1l and A2, the control
(23) drives system (1)—(2) to the sliding surface
(8) and maintains motion on it if in the domain
 the control gain function k satisfies

k> (ISBIILg, + ISy, + ISADp+ 5 (24)

where p =: sup,cq {|[M1(Tz):||} and S is a
positive constant.

Proof: From o(z) = Sz = Ey and (22), it is
observed that

o(z) = SAM,(Tx), + SAM-Cy 'y + SBu
+SBG(x,t) + SF(x,t) (25)

By applying the control u in (23) to (25), it follows
from (3) and (4):

o7 (2)5(x)

<llo@) I (ISAI M (T2) | + IS BI Gl B
HISIHIE (e, )] = 1S BI(61 (MaCs 'y, 1)
+¢2(y, 1) — |S)| (1 (MaCy My, 1) + o (y, 1))
1)

<llo@)ll (IS BIl(g1 (. £) = 1 (MaCy 'y 1)
HISII (61 (2, ) = 1 (MaC3 'y, 1))
HISAY [IM: (T2)s]| - &)

< —Bllo() (26)

where (24) is used in the last implication. Hence,
the result follows. #

Remark 4. Compared with the work of (Zak
and Hui, 1993; Edwards and Spurgeon, 1995),
mismatched uncertainty is considered in this pa-
per. Unlike (Yan et al., 2004), the bound on the
mismatched uncertainty is used to design the con-
trol to enhance robustness. Therefore, the control
scheme presented here is less conservative.

3.2 Lyapunov Control Design
In this section, a control scheme based on Lya-

punov techniques is presented using Assumptions
B1-B3.



Consider the control law

6 — T
u=—Ly— ngy — &2 | P M Cy P (HT )My
+v (yat) +U2(yat) (27)

where £; and e, are both positive constants, and
v1 and vy are respectively defined by

U1 (y’ t)

_ { M0 (51 (2O 1) + 92(, 1)), Hy #0

12yl (28)
0, Hy=0

V2 (y’ t)

H™ M
_ {Ww%(mc;y,t) S0, 1 #0 g,
0, y=20

The following conclusion can be presented:

Proposition 3. Under Assumptions B1-B3, sys-
tem (1)—(2) is asymptotically stabilized by control
(27)—(29) if there exists a neighborhood Q- of the
origin in 2 such that for any z € Q5 \ {0}

1 2
2" Qo — (5521 + 5.cwf)||z\4l(m:)1||2

—2e5|| Py My (Tz)1||> < 0 (30)

for some positive constants £; and &s.

Proof: The closed-loop system from applying the
control (27)—(29) to (1) is described by
#=(A—- BLO)z — B(%Hy + o] | Py Mo Cy L2
(HT)My = w1 (y, ) = va(y,1) = G(x,1))
+F(x,t) (31)

The objective now is to prove system (31) is
stable. Consider the Lyapunov candidate V =
27 Pyz. By using (7), the time derivative along the
trajectories of system (31) is given by

€
Vi =—2"Qxz + 2$TP23( - %Hy

—&9|| LMo Cy )P (HT )My + 0 (y, 1)
+G(z,t) + va(y, t)) + 22" Py F(z,t)

=—z"Qsx + 2yTHT( — %Hy + v1(y, t)
+G(a, ) +2(y" H[=e|| BMLC5 |
(H)My + va(y. 0] + 2" PF(,1) ) (32)

where Assumption B2 is used above. From (3),
(22) and (28), it follows that

yH (= S Hy+ iy 1) + G, 1))

€1 2 - Hy -1
< == Hyl|" = (Hy)" v |91 (M2C5 y, t
2|| II* — (Hy) IIHyII[ 1(M2Cy )

+¢2(y, t)] + [[Hyl| [f1 (2, t) + ¢2(y,1)]
< —%||Hy||2 + [[Hyl| Lo, [|M1(Tz)1]|

1
L5, |1 My(T)s |1 (33)

< —
— 2&

where Young’s inequality 2ab < e1a® + Lb% is
used above. From Assumption B3, it follows that

H™(H™)My =y and from (4)

.’ETPQF(ZU,t)
< ZYPualP + 5 (1 (2.0) + ¥a(0,1)
< es[||PyMy(T)1 || + || PaMaCy Pyl
1
+3 (V3 (y, 1) + i (2, 1)) (34)

Then from (29) and (34):

Y HT (—&2|| PMC3HP(HT) My + va(y, 1)
+a2" PyF(x,t)

B HT)M

< —eal| P MG Py — i )Y

ea|lyl?
(7 (M2Cy Yy, t) + 15 (y, 1)
+ea||Py My (Ta)1||* + e2l| M C5 7 Pl

1
+ (. t) + i)
1
< eo|| P My (T)||? + 5E¢%||J‘/[1(Tﬂﬁ)1||2 (35)

Substituting (33) and (35) into (32), it follows
from (30) that V' |(31) is negative definite in the
domain 5. Hence the conclusion follows #.

Remark 5. The controller designed above is
based on the work in (Yan et al., 1998) which is
only applicable to square systems and requires H
in Assumption B2 to be nonsingular. However, in
this paper, these conditions have been weakened.
Furthermore, unlike (Yan et al., 1998), the non-
linear bounds, particularly the bound on the mis-
matched uncertainty, is used in the control design
to enhance robustness. Thus the work developed
here includes (Yan et al., 1998) as a special case.

4. DISCUSSIONS
4.1 Robustness

In the sliding mode, the system dynamics are
completely robust to matched uncertainty, but the
matched uncertainty affects the reaching phase if
the uncertainty bound is a function of the state
variables and only a subset of state information
is available. The mismatched uncertainty affects
both the sliding motion and the reaching phase.



If the bound on the uncertainty is a function of the
output then the reachability condition can always
be satisfied by designing appropriate control gains
no matter whether the uncertainty is matched or
mis-matched.

Using Lyapunov techniques, the matched uncer-
tainty can be cancelled completely if its bound
can be expressed as a function of the output by
designing an appropriate control. However, this is
not true for the mismatched case.

In the two control strategies proposed, the effects
of uncertainty, generally speaking, can not be can-
celled completely if the bounds are a function of
the states instead of just the outputs. This is rea-
sonable since only output feedback is allowed. An
approach to deal with such uncertainty has been
presented and shown to enhance the robustness.

4.2 Stabilised Domain

Comparing (20) with (30), it can be observed that
with the sliding mode approach, the stability con-
dition only involves the sliding motion variables
and has nothing to do with any other variables. In
fact, the stability condition (20) is only required
to be satisfied on the sliding surface (8), and what
is more, it has nothing to do with matched un-
certainty. However, for the Lyapunov design, the
stability condition (30) is closely connected with
all state variables and the matched uncertainty
may destroy the system stability if the bounds
are not functions of the outputs. Therefore, the
latter is more conservative in this regard. How-
ever, reachability is necessary to apply the sliding
mode technique. It should be pointed out that in
sliding mode control, the reachability condition is
always satisfied in any bounded region if sufficient
control effort is available.

The study shows that a larger stabilised domain
can be obtained using sliding mode control than
Lyapunov control if a global result is not available.

5. CONCLUSION

This paper has presented two control strategies
to stabilise a class of nonlinear systems with
nonlinear disturbances using only static output
feedback. Based on the method given by Edwards
and Spurgeon, a sliding surface was proposed
and an associated sliding mode control scheme
presented. A Lyapunov control scheme based on
(Yan et al., 1998) has also been proposed which
extends the approach used in (Yan et al., 1998)
to a wider class of systems. A new approach for
dealing with the uncertainty has been given when
the bounds cannot be expressed as functions of the
outputs. This study shows that both approaches

produce good robustness. A comparison between
the two approaches has been given.
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