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1. INTRODUCTION

Dynamic model inversion and tracking problems are
equivalent in terms of computation of the input needed
to make a plant follow a given output trajectory. The
set of assumptions which must hold for the provision
of exact inversion/tracking in the control sense are: ex-
act plant modelling, input-output uniqueness, asymp-
totic stability and minimum-phase behavior. In prac-
tice, however different conditions like modelling er-
rors, parameter uncertainties, exogenous disturbances,
hard nonlinearities, non-minimum phase behavior, etc.
make just an approximate model inversion/tracking
possible. This paper introduces a new control struc-
ture, which is therefore appropriate. The structure is
designated asinverse disturbance observer(IDOB). It
represents a modification of thedisturbance observer
(DOB) structure, (Umeno and Hori, 1991). The desig-
nation ’inverse’ refers to its model inversion task.
Basically, the IDOB controller is a two-degree of
freedom inversion structure, which unifies the high-
gain feedback and feedforward exact model inversion
principles. The respective design parameters are aQ-
filter in the feedback path, and an approximate inverse
G̃−1 for the plantG in the feedforward path, Sec-
tion 2. While the IDOB controller inherits the basic
structural properties of the standard DOB, s.a. stability
conditions and sensitivity functions, the two structures
implement essentially different tasks. Namely, rather

than for tracking, DOB is primarily used for model
regulation task targeting closed-loop input-output dy-
namics to some nominal oneGn.
The basic convenience with the IDOB structure is the
design simplicity of its parameters̃G−1 and Q. For
instance,G̃−1 is designed as the approximate inverse
of the plantG, i.e.GG̃−1 ≈ 1 within the operational
frequency range. The mathematical paradigm for the
design of the IDOB controller is based on modelling
of non-exact (imperfect) inversion. Therefore we in-
troduce the notion ofimperfectionin Section 3. For
instance,G = G̃(1 + W2∆) describes the multiplica-
tive imperfect inversion model, whereW2 weights the
imperfection.
Q can be designed by using analogous techniques to
those for the one-degree of freedom feedback struc-
tures, (Doyleet al., 1992). In Section 3 it will be
shown that for a multiplicative imperfection weighted
by W2 and a performance specification weighted by
W1 the condition for simultaneous stability and per-
formance reads‖|W1(1−Q)|+ |W2Q|‖∞ < 1. This
equation represents the basic equation of IDOB and
it is primarily used to shapeQ. E.g. by loopshaping
techniques (not presented here) based on this equation,
Q can be shown to be a unity gain low-pass filter.
The first summand in the latter condition|W1(1−Q)|
refers to performance specifications and it requires a
high bandwidth forQ. This is, however, bounded by



the second stability term|W2Q|, which typically in-
creases for higher frequencies. Hence, the bandwidth
of Q is determined by compromising between stability
and performance, Section 3.
The paper is concluded by some important design re-
marks referring to robust inversion, realization, differ-
ent IDOB structures, systems with sinusoidal inputs,
and multivariable systems in Section 4.

2. INVERSE DISTURBANCE OBSERVER

2.1 Basic idea

The new control structure in its basic form is shown
in Fig 1. Identify here the plantG, and the two de-
sign parameters (two degrees of freedom):G̃−1, the
approximate inverse ofG, and theQ−filter. In addi-
tion to the standard signal designation (r reference,u
control effort,y measurement,e = r−y error,d output
disturbance andn noise), two additional signals̃y and
ε are of interest for the structure in Fig 1. Note thatε
can be interpreted as the ’error integral’ (see below).
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Fig. 1. IDOB control structure

The transfer functions from the referencer to the
plant inputu (Gru) and its outputy (Gry) are easily
obtained from Fig 1

Gru =
G̃−1

1−Q(1−GG̃−1)
(1)

Gry =
GG̃−1

1−Q(1−GG̃−1)
. (2)

To present the basic idea of the IDOB control structure
introduce the notation:

(A): Q = 1 (infinity-gain feedback)
(B): G̃−1 = G−1 (feedforward exact inversion)
(C): Gru = G−1 (perfect inversion)
(D): Gry = 1 (perfect tracking).

Then (1) and (2) read directly

(A) ∨ (B) ⇒ (C) ∨ (D). (3)

Note that the opposite implication does not necessarily
apply.
In practice, none of the conditions(A) and (B) is
realizable for all frequencies. In fact,(A) would desta-
bilize any practical loop, soQ must ultimately roll-off
for high-frequencies. Further, the feedforward exact
inversion as defined in(B) fails at least for high-
frequencies. Hence, the conditions(A) and(B) make

sense only in the operational frequency bandwidth.
Even then the two conditions must be weakened due
to implementation limitations to

(A′): Q ≈ 1 (high-gain feedback)
(B′): G̃−1 ≈ G−1 (feedforward inversion).

However it is important that though weakened the
conditions (A′) and (B′) collaborate, that is, they
contribute independently towards situations(C) and
(D). For Q ≈ 1 due to the positive feedback in
the Q-loop in Fig 1 a high-gain controller results.
If G̃−1 ≈ G−1, then exact feedforward inversion
is approximately realized so theQ−feedback loop
is almost idle. Therefore, IDOB control structurally
unifies the high-gain feedback and the feedforward
exact inversion principle, (3).

2.2 Stability

For internal stability the transfer function matrix from
the input vector(r, d, n)T to the output vector includ-
ing internal signals(ε, ỹ, y)T is examined, see Fig 1.
The reader may easily check that

 ε
ỹ
y

 =

 1−GG̃−1 −1 1
1 −Q Q

GG̃−1 1−Q QGG̃−1


1−Q(1−GG̃−1)

 r
d
n

 .(4)

The above system is well-posed since the determinant
of the transfer function matrix

det = 1−Q(1−GG̃−1) (5)

does not identically vanish. Note that(A′) implies
that det ≈ GG̃−1, and (B′) det ≈ 1. Beyond the
operational frequenciesdet ≈ 1.
Essential implications for the IDOB structure are pro-
vided by the sensitivityS = y/d and complementary
sensitivityT = y/n functions

S =
1−Q

1−Q(1−GG̃−1)
(6)

T =
QGG̃−1

1−Q(1−GG̃−1)
. (7)

As usual, the two are constrained by the fundamental
algebraic conditionS + T = 1. Also S = 1/(1 + L)
and T = L/(1 + L), whereL stands for the loop
transfer function

L =
QGG̃−1

1−Q
. (8)

It is convenient to define also the three latter functions
for the situation that corresponds to feedforward per-
fect inversion (condition(B))

S̃ = 1−Q, T̃ = Q, and L̃ =
Q

1−Q
. (9)



One important implication of sensitivity function is re-
lated to the errore = r−y dynamics, refer to equation
(15). For typical applications requiring zero DC error
tracking,S(0) = 0 must hold, implyingQ(0) = 1.
The latter condition produces always a pole ats = 0
in the expression1 1/(1−Q). Hence according to (8)
the poles = 0, as expected, appears also in the loop
transfer functionL.
According to definition, the IDOB structure is internal
stable if the nine transfer functions in (4) are stable.
The necessary and sufficient conditions for internal
stability are set by the following theorem, which is an
adoption of the standard theorem on internal stability.

Theorem 1.The IDOB control loop with a filterQ and
an approximate inversẽG−1 is internal stable iff the
following two conditions hold:

(a) The transfer function1 − Q(1 − GG̃−1) has no
zeros inRe(s) ≥ 0.

(b) There is no pole-zero cancellation inRe(s) ≥ 0
in the productQGG̃−1

1−Q .

Note that the expression in condition (a) corresponds
to 1 + L, and that in condition (b) toL.
Due to the poles = 0 in L, the expression
QGG̃−1/(1 − Q) includes the factor1sGG̃−1. Given
that condition (b) in the above theorem prohibits pole-
zero cancellations forRe(s) ≥ 0 in 1

sGG̃−1, the two
restrictions

G(0) 6= 0, G(0) 6= ∞ (10)

arise. Furthermore any non-minimum-phase and un-
stable dynamics inG is non-invertible. In this case,
a trade-off between exact inversion and stability is
needed. One possible approach is to invert byG̃−1 just
the invertible (stable minimum phase) part and then
designQ appropriately to guarantee stability.

G with a RHP zero: It is often the case that physical
systems include right half-plane (RHP) zeros (non-
minimum phase behavior). Here we confine the dis-
cussion to the case of just one RHP zero

G = G̃
1− λs

1 + λs
= G̃

(
1 +

−2λs

1 + λs

)
, λ > 0. (11)

Note that this case is often met in practice. For the sake
of simplicity let Q = 1/(τs + 1). Then condition (a)
in Theorem 1 readsτ > λ. Thus ifG̃−1 is constrained
to cancel the invertible dynamics ofG a Q-loop with
a sufficiently low bandwidth is capable of stabilizing
the IDOB structure with a non-minimum-phase zero.
Of course, for a large enough RHP zero (λ � 1)
this condition is noncritical. However, the situation
becomes critical if the RHP zero is slow. Then the

1 Here stems the motivation for the denotation ’integral error’ for
the variableε = 1/(1−Q)e from.

stability condition forces the crossover ats = 1/τ
be close to the RHP zero ats = 1/λ, which is very
inconvenient. The closed-loop performance degrades
and the phase margin substantially reduces due to
the RHP zero, which is a reflection of well-known
difficulties with slow non-minimum phase zeros.

G with a RHP pole: Again consider the case with one
RHP pole ats = 1/λ

G = G̃
1 + λs

1− λs
= G̃

(
1 +

−2
1 + λs

)−1

, λ > 0. (12)

Then condition (a) in Theorem 1 requires an unstable
filter Q with a high enough bandwidth−τ > λ. If
the RHP pole is not too high, then the latter condition
is easily met. A high RHP pole, on the other hand,
may drive the bandwidth ofQ too high, so the comple-
mentary sensitivity functionT may become too large,
thus reducing stability phase margin. In addition, most
probably too much noise would have already been
injected into the system. This reflects the well-known
difficulties with fast open-loop unstable poles.

3. ROBUSTNESS AGAINST IMPERFECTION

3.1 Imperfection

In practice,G̃−1 can never provide exact inversion
of the plantG. Here we want to set a paradigm for
the analysis in case of imperfect inversion. Different
models for the imperfect inversion may be defined. For
the sake of simplicity we concentrate here mainly on
the multiplicative imperfection2

G = G̃(1 + W2∆) (13)

whereW2 is a proper stable weighting function and
‖∆‖∞ < 1 represents a stable unstructured disk-like
uncertainty. Typically,W2 increases with frequency
due to model mismatching.
Note that referring to (11) the effect of a RHP zero
in G at s = 1/λ can be included in a multiplicative
imperfection withW2 = (−2λs)/(1 + λs). Similarly,
a RHP pole ats = 1/λ is possible to include in
the imperfection modelG = G̃/(1 + W2∆) with
W2 = −2/(1 + λs). In both cases this is done at the
price of conservativeness.

Q

W2∆
r

Fig. 2. Stability accounting imperfection

2 Here we feel more comfortable in using the termimperfection
rather thanuncertainty, since generallyW2∆ models the missing
dynamics inG̃−1.



3.2 Stability

The problem explored here is: assuming that IDOB
closed loop with perfect inversion (condition (B))
is stable, how big is the minimal imperfection that
destabilizes the IDOB loop? The simplest answer to
this question uses the small-gain theorem. Therefore
check that after substitution of the model (13) in Fig 1
the IDOB structure collapses to the one shown in
Fig 2. Now according to the small-gain theorem the
latter structure is stable for all∆s within the disk of
radius1 if and only if the condition

‖W2Q‖∞ < 1 (14)

holds. Note that this condition basically represents the
known robust stability condition of a one-degree of
freedom feedback structure‖W2T̃‖∞ < 1.
Equation (14) sets stability constraints in the inter-
action between the imperfectionW2 and the design
parameterQ. It has a simple and elegant geometrical
interpretation in terms of the Bode plots ofQ andW2.
Namely, the IDOB structure with the imperfectionW2

is internally stable iff the magnitude Bode plot of the
functionW−1

2 lies above that ofQ. Recall that|W2|−1

rolls off toward zero at high frequencies, thus putting
a limitation for the bandwidth of the filterQ. Simi-
lar interpretation can be done using Nyquist analysis.
SupposeQ = 1/(1+ τs). Due to the imperfection the
Nyquist plot ofL is a region delineated by circles with
center atL̃ = 1/τs and frequency dependent radii
|W2L̃|. Now if the bandwidth ofQ continuously in-
creases, so too does̃L. At a certain frequency the disk
L gets larger and simultaneously moves away from the
origin, thus reducing both the phase and magnitude
margin.

3.3 Tracking

Asymptotic tracking is defined as the ability of the
control loop to drivey → r, that is,e → 0 ast →∞.
For instance, ifr is a step, then due to

e

r
= S(1−GG̃−1) (15)

the functionS must have a zero ats = 0, which is
equivalent toQ(0) = 1. For example this is fulfilled
by Q = 1/(τs + 1).
Now consider a set of sinusoidal inputs confined
within some frequency bandwidth. LetWp weight a
desired tracking response in (15) in the sense that
‖e‖2 < ‖Wp‖−1

∞ ‖r‖2. For larger|Wp| the tracking
performance improves. However, it is intuitive that
for sufficiently large imperfectionsW2∆, the perfor-
mance set byWp may get lost. It is thus important
to set up the conditions for meeting the performance
set byWp in the presence of the imperfectionsW2.
In other words, a relationship linking imperfection
W2, performanceWp and the filterQ is searched

for. Therefore, substitution of (13) into (15) yields
|SW1∆| < 1, ∀ω, or equivalently

‖W1S‖∞ < 1 (16)

where we switch to the notationW1 = WpW2. Due
to perturbation of the sensitivity functionS by the
imperfectionW2∆ the latter equation reads∥∥∥∥∥ W1S̃

1 + W2∆T̃

∥∥∥∥∥
∞

< 1. (17)

This equation can be further manipulated provided
that internal stability condition‖W2T̃‖ < 1 holds to∥∥∥|W1S̃|+ |W2T̃ |

∥∥∥
∞

< 1 (18)

or finally to

‖|W1(1−Q)|+ |W2Q|‖∞ < 1. (19)

Equation (19) is an elegant description of simplicity
and efficiency of the IDOB control structure. It repre-
sents the basic equation for the loopshaping design by
Q. It can be shown that thereby a very simpleQ results
(loopshaping details are avoided here). Namely, for
operational frequencies, where|W1| � 1 > |W2|
holds, the conditionQ ≈ 1 results, and for high
frequencies (|W2| � 1 > |W1|) Q ≈ 0 results. In
general, it is easy to define such aQ, e.g.Q = 1/(τs+
1). The only design parameter here is basically its
bandwidth. Therefore, (19) should be used. Note that,
for better performance the term|W1(1 − Q)| in (19)
requires a high bandwidth, which is however com-
pelled by the stability term|W2Q|. Thus, the designer
should meet a compromise between these two con-
flicting specifications.
This situation can also be given a nice geometrical in-
terpretation in the Nyquist plane. Note that (18) can be
equivalently written in the form|W2Wp| + |W2L̃| <

|1 + L̃|, ∀ω. If Wp = 0, then the geometrical in-
terpretation given for stability in the previous section
holds. However, due toWp 6= 0, the region delineated
by L’s, instead of just the point−1 must avoid now a
disk with center at−1 and radius|W2Wp|. Thus, for
a given performanceWp, the bandwidth ofQ (= 1/τ )
has to be narrowed.

4. MISCELLANEOUS REMARKS

4.1 Robust inversion

A drawback of exact feedforward inversion is the
missing robustness. Robust inversion is defined as the
accomplishment of exact inversion of a system irre-
spectively of plant uncertainties in form of parameter
variations, un-modelled dynamics and external distur-
bances. The point here is to note that the high-gain



feedback path with theQ-loop (condition(A′)) pro-
vides robustness to the approximate inversion. This is
motivated by the discussion in Section 2.1, that is, by
substitution of condition(A′) in (1), yielding

u

r
≈ 1

G
(20)

that is, for a given referencer any parameter changes
or un-modelled dynamics of the plantG are accord-
ingly observed atu.
Furthermore, while providing model inversion, the
system response on disturbancesd is minimized at
operational frequencies due toS ≈ 0. The situation
T ≈ 1 in this range is not critical, since the mea-
surement noisen is usually high-frequent. Similarly,
beyond operational frequency range, whereQ ≈ 0 and
thereforeT ≈ 0, the injected noise into the feedback
loop is attenuated. AgainS ≈ 1 here is uncritical since
the disturbanced is usually low-frequent. In summary,
for a given application, in addition to the constraints
set by stability/performance condition (19), for an ad-
equate shape ofQ, the disturbance and noise informa-
tion need to be taken into account, too.

4.2 IDOB vs DOB

As already noted in the introduction IDOB is a mod-
ification of the so-calleddisturbance observer(DOB)
control structure shown in Fig. 3. Due to the analogous
structure, some inherent structural properties of DOB
are inherited by IDOB. For instance, the sensitivity
functions for the two structures are of identical form.
However, the two structures implement essentially dif-
ferent tasks. This difference is reflected by the differ-
ent design and different location ofG−1

n (DOB) and
G̃−1 (IDOB).

un G−1

n

u yG

Q

Fig. 3. DOB scheme

Due to the location ofG−1
n in the feedback path, the

DOB is usually used for model regulation purposes,
that is, it tries to impose an input-output dynamics
that matches to that ofGn. This task should also hold
in the presence of uncertainties and disturbances. The
IDOB controller, on the contrary, tries to recover the
imperfection of G̃−1. In both cases, the respective
differences betweenGn and G, and G and G̃, are
seen respectively as fictive disturbances atun in Fig. 3
and aty in Fig. 1. And, they both use the identical
mechanism for its compensation by theQ−loop.
Another distinction resulting from the first one refers
to the design ofG−1

n andG̃−1. UsuallyGn is designed
to be of lower complexity thanG, while G̃ should be

designed to modelG as accurate as possible. Thus, the
mathematical formalism described in Section 3 is less
conservative for the IDOB structure.

4.3 Resonant IDOB

Many problems involve robust tracking of sinusoidal
references. Such problems are e.g. current control in
electrical drives, design of active filters etc. While
most of the hitherto discussion refers to tracking of
slowly changing signals, the proposed structure can
be easily adopted for perfect tracking of sinusoidal
references. For the sake of simplicity assumer =
sinω0t. Then, for zero-error tracking the sensitivity
function S must have a zero ats = jω0, that is,
Q(jω0) = 1. The lowest order filter which satisfies
this condition is

Q =
2Dτs + (1− ω2

0τ2)
τ2s2 + 2Dτs + 1

(21)

where 0 ≤ D ≤ 1 and ω0τ < 1. Given that
L̃ = Q/(1−Q) a resonance appears at the frequency
ω0 in the loop transfer function, so no matter what
imperfection, zero-error tracking of the reference is
guaranteed.
If ω0τ = 1 is chosen, thenQ(0) = 0 andT (0) = 0,
see (7). This may be useful if the sensors are corrupted
with offset. Then the zero of T ats = 0 takes care of
structural offset compensation.

4.4 Derivative structures

Different structures sharing same basic properties may
be derived from the IDOB structure presented in Fig 1.
Two such structures are shortly presented in the se-
quel.
If G̃−1 is improper then for realization purposes the
low-pass filterQ may be relocated as shown in Fig 4.
Effectively, the first row of the matrix in (4) is multi-
plied byQ. Hence the conditions(C) and (D) trans-
form to

(C ′): Gru = QG−1 (approximate inversion)
(D′): Gry = Q (approximate tracking).

This is not critical if the bandwidth ofQ is high
enough. On the other hand, the sensitivity functions
S, T and the loop transfer functionL are identical to
those of the basic IDOB structure. Consequently the
stability and performance conditions in (14) and (19)
will hold, too.
Fig 4 additionally suggests adaption of measurable
statespj of the plantG, which in G̃−1 appear as
parameters.

Other than the two structures in Figs 1 and 4, the
structure in Fig 5 features an inputQ−loop. HereGa

stands for the actuator dynamics. IfGa = 1, that is,
it is lumped inG (as was the case with other struc-
tures), then input-output and sensitivity functions are
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Fig. 4. IDOB derivative scheme

identical to those for the scheme in Fig 4. Otherwise,
they are directly therefrom derived by the substitution
Q → QGa. E.g. the high-gain condition(A′) turns to

(A′′): QGa ≈ 1 (high-gain feedback).

Note that in applications using rate saturated actuators
Ga this specific structure turns out to be notably
efficient in providing robustness against limit cycles.

ũ

y

GaQ

G

r
QG̃−1 u

Fig. 5. IDOB derivative scheme with inputQ−loop

4.5 Multivariable IDOB

Let G in Fig. 1 describe a MIMO system withu ∈ Rk

andy ∈ Rl and letG̃−1 represent a right-inverse ofG
(G is assumed to have full column rank). After some
algebraic manipulations3 it can be shown that for the
MIMO structure

Gru = G̃−1(I −Q(I −GG̃−1))−1 (22)

Gry = GG̃−1(I −Q(I −GG̃−1))−1 (23)

whereby I = Il×l is a unity matrix. Notice that
the form of the latter equations is identical to the
counterpart equations for the SISO structure (1) and
(2). Following the same lines as for the SISO structure,
it can be concluded that both degrees of freedom

(A′′′): Q ≈ I (high-gain feedback)
(B′′′): G̃−1 ≈ G−1 (feedforward inversion)

independently contribute to the inversion of the MIMO
plantG. In particular, due to(A′′′) equation (22) reads

Gru ≈ G−1 (24)

3 Here the matrix identities(I +BA)−1B = B(I +AB)−1 and
(A − BC−1D)−1 = A−1 + A−1B(D − CA−1B)−1CA−1

are used.

that is, for slowly varying inputs robust inversion
w.r.t. parameter and model uncertainties applies. For
the analysis of disturbance and noise rejection, the
sensitivity functionsS andT are computed to be

S = (I −Q)(I − (I −GG̃−1)Q)−1 (25)

T = GG̃−1Q(I − (I −GG̃−1)Q)−1. (26)

Again both equations posses the identical form as
sensitivity functions for SISO systems in (6) and (7).
In the operational frequency range, where(A′′′) holds,
S ≈ 0 results, and robust inversion w.r.t. external
disturbances is accomplished.
For the accomplishment of the condition(A′′′), the
Q−filter may be designed as the diagonal matrix

Q =


Q1 0 0 . . . 0
0 Q2 0 . . . 0
0 0 Q3 . . . 0
...

...
...

...
...

0 0 0 . . . Ql

 (27)

wherebyQi, i = 1, 2, · · · l are low-pass filters with
unity gain.

5. CONCLUSION

A novel two-degree of freedom controller structure
denoted asinverse disturbance observer(IDOB) for
model inversion and tracking tasks has been intro-
duced. The controller features a unification of the
high-gain feedback and feedforward exact inversion
principles. It is especially useful if the plant is not
exact invertible. A mathematical paradigm has been
developed for its design.
Many other two-degree of freedom structures carrying
different names have been already published. It has
been claimed, that all of them are actually equivalent,
(Horowitz, 1963). The structure presented here is by
no means an exception, however the authors believe
that it provides essential advantages w.r.t. design sim-
plicity due to its very natural structure.
The application field of the IDOB controller is very
wide including motion control, force control, automo-
tive, robotics, flight dynamics, chemical engineering,
electrical drives, etc.
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