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1. INTRODUCTION

Almost 90% of control systems consists of soft-
ware. The complex communication inherent to
control system development requires new lan-
guages and methodologies. Nowadays, distribu-
tion becomes inherent in control systems. In par-
ticular, hybrid systems are no exception (Simsek,
T. et al., 2003). In this setting, distribution
may present additional aspects, in comparison
with the case of discrete systems. Distribution
may be present in control, execution (which may
have stochastic features), communication or par-
allelism. Moreover, many concepts specific to dis-
tributed systems do not always admit a smooth
translation into the continuous case. Many times
the definition of this concept strongly depends on
the continuous mathematics employed to describe
the systems.

In distributed hybrid systems, interaction is very
complex especially because of the continuous/ dis-
crete aspects involved. Recent developments in
computer science and hybrid systems have identi-
fied the need for proper treatment of interaction in

continuous systems. For embedded systems CSP-
based approaches define interaction grounded on
a solid tradition. Hybrid extensions of process-
algebra (Vereijken, J.J., 1995) are doing the same
role for hybrid systems. The limitations of all
these approaches consist of the necessity to define
the interactions using the intrinsic language of
continuous processes. This necessity is generated
by the fact that continuous aspects can not be
neglected in the context of concurrent hybrid sys-
tems. The distributed systems considered until
now are discrete concurrent systems enriched with
some continuous features.

In this work we make an attempt to define paral-
lelism and communication for stochastic hybrid
systems, in a very general setting. We use the
model introduced in (Bujorianu, M.L., 2004; Bu-
jorianu, M.L. and Lygeros, J., 2004a) (and fur-
ther developed in ( Bujorianu, M.L. and Lygeros,
J., 2004b)), namely GSHS (general stochastic hy-
brid systems). It generalizes the most used mod-
els of stochastic hybrid systems used in control
engineering. The stochastic features of the model
make this attempt difficult. From a computer



science perspective our approach uses a mixture
of ACP (Algebra of Communicating Processes)
developed by Bergstra and Klop (Baeten, J.C.M
and Weijland, W.P., 1990) and Robin Miner’s
CCS techniques. Parallelism is introduced in an
axiomatic manner as in the ACP tradition. Com-
munication is based on dually labelled transitions
(where duality means sent/received transitions or
active/passive transitions). Communication takes
place as a handshake between dually labelled tran-
sitions.

We introduce the concept of distributed stochastic

hybrid systems (DSHS) as an automata formal-
ism for compositional specifications of GSHS. A
DSHS can be thought of as an automaton repre-
sentation of a GSHS, with an extra possibility to
interact with other processes via so-called passive

transitions (which are discrete transitions). This
concept is a generalization of the so-called commu-
nicating piecewise deterministic Markov processes
developed in (Strubbe, S.N. et al., 2003), because
the underlying model used is more general.

Section 2 starts by motivating this work (subsec-
tion 2.1), then the DSHS model is formally defined
(subsection 2.2). After that, the parallel operator
and the communication between DSHS models are
defined in subsection 2.3. The partial conclusions
of this experiment are sketched in the last section.

2. DISTRIBUTED STOCHASTIC HYBRID
SYSTEMS

2.1 Motivation

Hybrid systems are used as a paradigm for mod-
elling embedded systems, recorded in Air Traffic
Management (ATM), with safety critical perfor-
mance requirements. Embedded systems of this
type have to operate in an uncertain and often
adversarial environment. Stochastic analysis and
control of hybrid systems is therefore essential
to study and improve the performance of ATM
systems in the presence of uncertainty.

The problem of safety analysis is addressed from
the perspective of the current centralized ATM
systems, where aircraft are prescribed to fol-
low certain flight plans, and all flights are con-
trolled by an Air Traffic Controller (ATC) from
gate to gate. In the context of ATM, different
safety relevant operation cases might occur as
follows: vertical crossings; overtake manoeuvres
in unmanaged airspace; ATC sector transitions;
missed approaches (see (Pola, G. et al., 2003)
for a detailed presentation), aircraft-to-aircraft
conflict and aircraft-to-airspace conflict. For ex-
ample, the ATCs are responsible for maintaining
a sufficiently large distance between aircraft to

avoid dangerous situations and ultimately colli-
sions, by issuing trajectory specifications to the
pilots. Separation assurance forms a major part
of the current ATC workload. If the level of au-
tomation in the ATM process increases, some of
the separation assurance tasks can be transferred
to the automated system. One approach for doing
this is to rely on conflict detection and resolution
(CDR) strategies to assist ATC. These strategies
try to predict the trajectories of aircraft within
managed airspace, analyse these trajectories in or-
der to decide if there is a substantial possibility of
loss of separation (conflict detection) and, if there
is, issue advisories to the ATC and/ or pilots on
how to resolve the problem (conflict resolution).

The model for predicticting the aircraft future
position should incorporate the information on
the aircraft flight plan, the aircraft dynamics, the
flight management systems. Each aircraft has to
follow a flight plan, which typically consists of
airways (straight lines between given way points
traveled at constant speed). The aircraft actual
motion might deviate from the planned motion
because of different sources of uncertainty. We
assume that wind is the main source of uncer-
tainty on the aircraft actual dynamics. The hy-
brid nature of the model is due to the change in
the dynamics when a way-point is reached. The
stochastic component is due to the wind described
by a random field, which is used to model the
spatial correlation between the wind perturbation
to the aircraft motion.

The use of GSHS to describe the aircraft dynamics
has some advantages. Explicitly, because these
models allow stochastic features both in the con-
tinuous dynamics and in the discrete transitions,
they can be instantiated in different ways. GSHS,
as a ‘unifying’ model, encompasses almost all the
models already proposed to deal with different
safety critical situations recorded in ATM (piece-
wise deterministic Markov Processes, switching
diffusions, etc. (See (Pola, G. et al., 2003) for an
overview). Therefore, techniques and tools specific
to GSHS might be employed in order to deal
with all the cases of interest. The conclusion is
that these safety critical situations can be treated
unitary in the modelling framework of GSHS.

In real life, distribution is present in many various
ways. Finding its adequate definition in a specific
context is often a difficult task. In ATM systems
one can easily discover that centralised control
coexists with many (semi) autonomic behaviours.
This situation is not very common for discrete
systems. Moreover, what can be logically seen as
centralised control is distributed from a physical
point of view. In example analysis, where space as-
pects are important, one might need a distributed
model. Simultaneous executions in ATM are, ob-



viously everywhere. From a continuous mathe-
matics viewpoint parallelism (simultaneous execu-
tions) can be easily modelled essentially because
of the lack of interaction. Basically, the Cartesian
product of two (continuous) processes can be in-
terpreted as their simultaneous execution. On the
other hand, the interaction is an important fea-
ture of these systems. This feature means possible
collaboration of multiple agents (both human and
non-human). Pilots talk to controllers and some-
times one with each other. Embedded controllers
usually control components that interact and are
aware of each other existence.

Due to the distributed nature of air traffic man-
agement, even advanced engineering design ap-
proaches have proven to fall short. It is quite rele-
vant to know that in the USA this has already led
to the involvement of distributed control theorists
and stochastic analysis in air traffic management
studies.

Taking in account the above considerations about
the features of the ATM systems, a further de-
velopment which we make in this paper is to
enrich the GSHS model with two capabilities:
compositionality and communication. The result
is what we have called distributed stochastic hybrid

systems (DSHS). In ATM , these models can illus-
trate architectures for handling conflicts between
multiple aircraft, while maintaining the situa-
tional awareness of human operators. The DSHS
modelling, designed on the skeleton of GSHS, con-
stitutes the appropriate framework within which
the CDR problems can be easily solved.

2.2 Model Description

In this section we introduce the DSHS formalism.
First we formally define its structure and after we
give an algorithm which describes its executions.

Definition 1. A DSHS, denoted by DH, is a col-
lection ((Q, d, m,X ), (f, σ), L, A, P ) where

(i) (Q, d, m,X ) describes the state space, which
is countable union of open sets from an euclidean
space (modes), each one corresponding to a dis-
crete location. Note that the dimension of em-
bedding euclidean space might be different for
different locations.

(ii) (f, σ) gives the continuous dynamics between
jumps of the continuous state within the locations.

(iii) L is the set of labels.

(iv) A are the set of active transitions. These
are the union of the boundary-hit transitions B

and the spontaneous transitions S. The boundary-
hit transitions B depend on the transition-choice
function C.

Formally, the elements of (i) are defined as follows:

• Q is a countable set of locations.
• d : Q → N is a map giving for each location

the dimension of the continuous state space
in that location.

• m : Q → N is a map giving the dimension of
the Weiner processes that govern the evolu-
tion of the continuous state.

• X : Q → R
d(.) maps each q ∈ Q into

an open subset X (q) = Xq of R
d(q); this

means that for each q ∈ Q, Xq is the
mode (the invariant set) associated to the
location q. Let us denote by X the whole
space, X = ∪{(q, Xq)|q ∈ Q}. We also
define the boundary set ∂Xq := Xq\Xq of
Xq and the boundary of the whole space
∂X = ∪{(q, ∂Xq)|q ∈ Q}.

The continuous motion parameters from (ii) are
given as follows:

• f : X → R
d(.) is a vector field and σ :

X → R
d(·)×m(·) is a X(·)-valued matrix. For

all q ∈ Q, the functions f q : Xq → R
d(q)

and σq : Xq → R
d(q)×m(q) are bounded and

Lipschitz continuous and the continuous mo-
tions is governed by the following stochastic
differential equation (SDE):

dx(t) = f q(x(t))dt + σq(x(t))dWt

where (Wt, t ≥ 0) is an m(q)-dimensional
standard Wiener process in a complete prob-
ability space.

The active transitions of (iii) are given as follows:

• B is the set of boundary-hit transitions
(forced transitions). Each element b ∈ B is
a quadruple (q, l, q′, Rb) where q is the origin
location, l is the label of the jump, q′ is
the target location, and Rb is the reset map
of the jump, i.e. for each x ∈ ∂Xq with
C(b, q, x) > 0 (see next item) and for all
Borel sets A of Xq′

the quantity Rb(x, A) is
the probability to jump in the set A when
the transition b is taken from the boundary
state x.

• The function C : B × Q × ∂X → [0, 1] is
defined such that for all q ∈ Q, all x ∈ ∂Xq,
and all b ∈ B, which are outgoing transitions
of q, the quantity C(b, q, x) is the probability
of executing a boundary-hit transition b. In
rest, C takes the zero value. Moreover,

∑
b∈Bq→

C(b, l, x) = 1 where Bq→ is the set of all
elements of B that are outgoing transitions
of q.

• S is the set of spontaneous transitions. Each
element s ∈ S is a pentuple (q, l, q′, Rs, λ),
where q is the origin location, l is the label of
the jump, q′ is the target location, Rs is the



reset map of the jump, and λ is the jump rate
(it determines the rate of process jumping).

The passive transitions of (iv) are given as follows:

• P is the set of passive transitions. Each
element p ∈ P is a quadruple (q, l, q′, Rp),
where q is the origin location, l is the label
of the jump, q′ is the target location, and
Rp is the reset map of the jump. The passive
transitions play a role in communication with
the outside world.

A general stochastic hybrid system (GSHS) can
be defined in a similar way as DSHS. The only
difference is that the discrete transitions do not
have labels and there is no choice function defined
on the boundary.

A realization of a DSHS given by the definition 1,
generates a stochastic process. The above remark
and the structure of a DSHS assure that this
process is a GSHS. We will refer to this process
as the associated GSHS to the given DSHS. In
this context, a DSHS execution can be defined
as a sample path of this stochastic process. For
the generation of the DSHS executions we assume
that no communication takes place, therefore the
passive transitions do not play any role in the
generation of executions.

To eliminate pathological solutions that take an
infinite number of discrete transitions in a finite
amount of time (known as Zeno solutions) we
assume that for each location q ∈ Q the number
of outgoing transitions is finite.

Execution of a DSHS

We assume that an initial hybrid state (q0, x0)
is given. The continuous dynamics in the mode
Xq0 is determined by the stochastic differential
equation (SDE) with q replaced by q0. Let ωq0

be
an arbitrary diffusion sample path starting in x0.
Suppose that ωq0

reaches the boundary ∂Xq0 at
time τ b and suppose that location q0 has n0 outgo-
ing spontaneous transitions. During the continu-
ous motion, for every outgoing spontaneous tran-
sition, a Poisson type process is activated. This
can generate a jump to another hybrid state. The
probability density functions of these processes is
equal to λi(xt(ωq0

)) exp(−
∫ t

0
λi(xt(ωq0

))), where
λi is the jump rate of the i-th outgoing sponta-
neous transition si. Let define τ q0

(ωq0
) := min

i=1..n0

τ i(ωq0
) where τ i is the jump time corresponding

to the i-th outgoing spontaneous transition si

(given by the Poisson probability distribution).

There are two possibilities: 1. If τ b < τ q0
, the

boundary is reached before any spontaneous tran-
sition is about to be executed, which means that
a forced transition is executed at time τ b; 2. If
τ q0

< τ b, the spontaneous transition correspond-

ing to τ q0
causes a jump at time τ q0

before the
boundary is reached.

Remark 1. The above discussions show that the
first jump time (corresponding to the diffusion
path ωq0

) is a minimum of n0 + 1 stopping times
(the first boundary hitting time and the stopping
times given by the Poisson probability distribu-
tions corresponding to the n0 outgoing sponta-
neous transitions from Xq0).

A boundary-hit transition at time τ b from the
boundary state xτb

(ωq0
) ∈ ∂Xq0 is executed

as follows. It could be the case that multi-
ple boundary-hit transitions are active in state
xτb

(ωq0
), therefore we use the choice function C to

choose one of the active transitions. A transition
b ∈ Bq0→

is taken according to the probability
measure determined by C(·, q0, xτb

). Then b =
(q0,lb, q

′

b, Rb) is the transition which takes place.
The post-jump location is q′b and the continuous

state after the jump is x′ ∈ Xq′

b which is drawn
according to the reset measure Rb(·, xτb

). From
the new hybrid state (q′b, x

′) at time τ b, the above
recipe can be repeated to continue the execution.

A spontaneous transitions s = (q0,ls, q
′

s, Rs) at
time τ q0

from the continuous state xτq0
(ωq0

) ∈
Xq0 is taken as follows. The target location
is q′s is governed by the probability measure
Rs(xτq0

(ωq0
), ·). Starting with the new location

(q′s, x
′) we can repeat the recipe given above to

continue the execution.

The executions of the DSHS can be thought of as
being generated by the following algorithm.

Algorithm. Generation of DSHS Executions.

set T = 0

select X-valued random variable x̂

repeat

set q = X−1(x̂), nq the number of spontaneous
transitions from Xq

set xt as solution of (SDE) with initial condition
equal to x̂

select ωq a sample path for the process (xt) with
the start point x̂

select R
+-valued random variable Ŝ such that

Ŝ(ωq) = min(τ 1(ωq), ...τnq
(ωq), τ b(ωq)) where

τ i is jump time of the i-th outgoing spont. tr.

τ b is first hitting time of boundary ∂Xq

select the transition t = q  q′ associated to Ŝ

select Xq′

-valued r.v. x̂ according to Rt(., xŜ
)



set T = T + Ŝ

until true

2.3 Parallelism and Communication of DSHS

In this section we introduce a composition opera-
tor || on the set of DSHS. In the DSHS framework,
communication takes places by means of the pas-
sive transitions. The execution of an active transi-
tion is always independent on the environment. In
a context with two composed DSHS, one of DSHS
can execute a passive transition with label l if and
only if at the same time the other DSHS executes
an active event with label l.

Notations. We write q
l,R
7→ q′, q

l,R
→ q′, q

l,R,λ
; q′

to denote the existence of respectively boundary-
hit, passive and spontaneous transitions from q to
q′ with label l, reset map R and, in the case of
spontaneous transition, jump rate λ.

Parallelism

The parallel composition of two DSHS is defined
as follows:

Definition 2. Given two given DSHS

DHi = ((Qi, di, mi,Xi), (fi, σi), Li, Ai, Pi), i =
1, 2; the parallel composition DH = DH1||DH2

is the collection ((Q, d, m,X , f, σ), L, B, C, S, P )
whose components are defined as following:

(1) Q = Q1 × Q2;
(2) d : Q → N such that d(q1, q2) = d1(q1) +

d2(q2);
(3) m = m1 + m2;
(4) X : Q → R

d(.) such that X (q1, q2) = X1(q1)×
X2(q2);

(5) f (q1,q2) =

(
f q1

f q2

)
and σ(q1,q2) =

(
σq1

σq2

)
;

(6) b ∈ B, s ∈ S and p ∈ P if b, m and p can
be derived from the rules r1 till r6 defined
below, and r1’ till r6’ which are the mirrored
versions of r1 till r6.

r1.
q1

l,R1

7→ q′1, q2
l

9

(q1, q2)
l,R
7→ (q′1, q2)

r2.
q1

l,R1

7→ q′1, q2
l,R2

→ q′2

(q1, q2)
l,R
7→ (q′1, q

′

2)

r3.
q1

l,R1,λ1

; q′1, q2
l

9

(q1, q2)
l,R,λ
; (q′1, q2)

r4.
q1

l,R1,λ1

; q′1, q2
l,R2

→ q′2

(q1, q2)
l,R,λ
; (q′1, q

′

2)

r5.
q1

l,R1

→ q′1, q2
l

9

(q1, q2)
l,R
→ (q′1, q2)

r6.
q1

l,R1

→ q′1, q2
l,R2

→ q′2

(q1, q2)
l,R
→ (q′1, q

′

2)
(7) R, the reset map is given as the product

measure, namely in case r1, r3, r5

R ((x1, x2), ·) = R1(x1, ·) ⊗ 1x2

and in the case r2, r4, r6

R ((x1, x2), ·) = R1(x1, ·) ⊗ R2(x2, ·)

where x1 ∈ ∂Xq1 in case r1, r2, and x1 ∈ Xq1

(for the cases left) and x2 ∈ Xq′

1 ;
(8) the transition map λ for cases r3 and r4 is

given by

λ(x1, x2) = λ1(x1)

for all x1 ∈ Xq1 and x2 ∈ Xq′

1 ;
(9) the choice function C should be specified for

any q = (q1, q2) ∈ Q and any b : (q1, q2) 7→
(q′1, q

′

2) ∈ B. It is clear that b has been
derived from one of the following cases:

c1 : q1
b117→ q′1, q2 9, q2 = q′2,

c2 : q1
b127→ q′1, q2 → q′2,

c3 : q2
b237→ q′2, q1 9, q1 = q′1,

c4 : q2
b247→ q′2, q1 → q′1

Then for all (x1, x2) ∈ ∂X (q) the function is
defined as

C(b, a, (x1, x2)) =





C1(b1i, q1, x1); if α, (ci)i=1,2

C2(b2i, q2, x2); if β, (ci)i=3,4

undefined; if γ

α ⇔ (x1, x2) ∈ ∂X × Xq2 ; β ⇔ (x1, x2) ∈ Xq1 ×
∂Xq2 ; γ ⇔ (x1, x2) ∈ ∂Xq1 × ∂Xq2 .

and C takes the zero value in rest.

Communication

The meaning of the parallel composition of two
DSHS can be express as follows.

• If one agent is able to execute an active event
and the other agent does not have a matching
passive event, then the active agent executes
the transition and while the second agent
stays in the same location (rules r1, r1’, r3,
r3’).

• If contrary, the first agent can execute an
active transition and the second agent has
a matching passive transition, then both
agents execute respectively the active and
passive transition at the same time (rules r2,
r2’, r4, r4’).

• If the first agent has a passive transition with
label l and the second agent has no passive
transition with label l, then the composed
system has a passive transition with label l

outgoing from the joint location, which gives
the possibility to interact with other systems,
in an other composition context (rules r5,
r5’).

• If both agents have a passive transition with
the same label, then the composed system
also has a passive transition with this label.
The implication of this fact is that both
agents can execute the passive transitions
at the same time in another composition
context where a third agent executes an



active transition with the same label (rules
r6, r6’).

A state (x1, x2) is called a double boundary state

if both x1 and x2 are boundary points.

The choice function C is undefined for the double
boundary states. In the composed system exe-
cution, these points play a role only when the
two components reach their boundary at exactly
the same time τ b. It is not clear what to do in
such a situation. Two boundary-hit transitions
should be executed at the same time. It might
exist the possibility that the two transitions have
different labels and then a simultaneous execution
of these transitions gives problems from composi-
tionality point of view: If a third agent has both la-
bels available in passive transitions, which passive
transition should be chosen? However, for many
composed systems these problems would not be
present because the probability that two separate
agents reach their boundary at exactly the same
time is zero. We leave the choice of what to do
in double boundary states open and we say that
the composed DSHS is undefined on the double
boundary states.

Because the reset maps are not defined for the
double boundary states, the boundary-hit transi-
tions are not defined for these states.

The choice function C from the definition 2, being
defined by using the choice functions C1, C2 of the
components, meets the conditions imposed to the
choice function from the definition 1 of DSHS.

From the definition 2 and the remarks 2.3, 2.3, it
results that the parallel composition DH of the
two DSHS DH1 and DH2 is a DSHS which is
undefined on double boundary states. This under-
specification can not be seen as a shortcoming of
the parallel composition. It follows naturally from
the fact that a parallel execution of two DSHS
brings forth cases where a choice has to be made.
This choice can be made by the parallel operator
(when the composition would result in a DSHS),
but it might be better to leave this choice open
because it is possible to depend on the situation
or the kind of application which choice is more
appropriate.

3. CONCLUSIONS

In this paper, we present a distributed version of
one of the most general unifying models of hybrid
systems.

Distribution in this paper means parallelism and
communication. A parallel composition operator
for DSHS is defined à la ACP. Communication is
defined in CCS style and it takes place via some
discrete transitions called passive transitions. The

communication takes place via some discrete tran-
sitions.

From the communication point of view, the next
step will be to introduce the communication for
the continuous part of the DSHS. However, this
further development is not straightforward. In-
troducing the possibility for two agents to have
communication between their continuous and dis-
crete parts, the resulted composed agent might
not be an DSHS. This is why we have to find
out at least sufficient conditions to ensure that
the parallel composition of two agents (when they
have ‘continuous and discrete communication’) is
well defined.
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