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Abstract: The paper is devoted to computational aspects of the problems of
realization of discrete-time nonlinear single-input single-output composite systems.
The main contributions are made in two directions. First, we study the relations
between three different methods that for any non-realizable system construct
a "compensating system” which will result in a realizable series or parallel
connection. Second, we implement these methods and algorithms in the computer
algebra system Mathematica. Results are illustrated by examples. Copyright ©

2005 IFAC
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1. INTRODUCTION

Most results on parameter identification are achi-
eved for systems described by input-output(i/o)
difference equations. At the same time the major-
ity of techniques for system analysis and control
design are based on state-space description and
unlike linear systems where a proper i/o differ-
ence model is always realizable in the state-space
form, nonlinear systems do not always enjoy this
property. The realization problem of input-output
equations has been extensively studied both in
continous-time (Van der Schaft, 1987) (Crouch
and Lamnabhi-Lagarrigue, 1988), (Crouch et al.,
1995), (Dealaleau and Respondek, 1995) and
discrete-time cases (Kotta et al., 2001), (Sadegh,
2001), (Kotta and Sadegh, 2002). The general
realizability conditions for discrete-time nonlinear
systems together with constructive algorithm (up
to integrating the differential one-forms) to find
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the state coordinates were presented in (Kotta
et al., 2001). Similar results for continuous- time
systems were obtained in (Moog et al., 2002).
The wide and general subclass of realizable i/o
difference equations was suggested in (Kotta and
Sadegh, 2002).

While majority of contributions consider only sin-
gle system, real world systems often consist of
compositions of some simpler systems. For exam-
ple, in telecommunications, circuits of the devices
can be considered as series connections of differ-
ent (i/o) systems (Nomm et al., 2004a). There is
a number of contributions which study different
aspects of composite systems (Hammer, 1984),
(Sontag and Ingalls, 2002), (Willems, 1997),
(Hammer, 1989). In (Nomm, 2003) preliminary
results on realization of series and parallel connec-
tions of /o models were presented, and (Nomm et
al., 2004b) proves that for any non-realizable sys-
tem it is possible to construct a post-compensator
which will result in a realizable series connection
and a feedback which will result in a realizable



closed-loop connection. Moreover, the construc-
tive algorithms were given to obtain a compen-
sating system for the cases of series and closed-
loop connections. In many cases results obtained
for continuous-time nonlinear systems lately were
adapted for discrete-time case. At the best of
our knowledge there are no similar results for
continuous-time case.

In this paper we will prove that, alternatively, a
pre-compensator, connected in series to the origi-
nal system, can also make a compensated system
realizable, and prove the equivalence of pre- and
post-compensated systems. As another approach,
we suggest to use the parallel connection to make
the system realizable. Finally, implementation of
those algorithms in the computer algebra package
Mathematica will be described and illustrated by
examples.

2. PROBLEM STATEMENT

Consider a single-input single-output system de-
scribed by a higher order nonlinear i/o difference
equation

y(t+n) = (y(®),...,y(t+n—1),
u(t),...,u(t+s)) (1)

where u(t) is a real-valued scalar input at time
instant ¢, y(t) is a real-valued scalar output at
time instant ¢, ¢ is real-analytic function defined
on IR™5+t1 n and s are nonnegative integers,
n > s. We call this original system an object.
The realization problem consists in constructing
the state equations

2t +1) = f(a(t),u(t) o)

y(t) = h(z(t))
with z(t) € IR™ such that the i/o sequences
generated by (2) are equal to the i/o sequences
satisfying equation (1). Then (2) will be called a
realization of (1). Input-output system is said to

be realizable if there exists a realization of the
form (2).

In the present paper the following compositions of
input-output difference models of the form (1) are
considered:

e Series connection of two systems
Under series connection we understand such
composite system that output of the first
system is the input for the second system.
In other words we connect output of the first
system to the input of the second. Two types
of series connection will be distinguished
throughout the paper.

Object and post-compensator
Consider two systems X,;; and post-compe-

nsator Y,s, described by input-output dif-
ference equation (1) and

Epst : g(t =+ m) =
= ¥(5() (t+m—1),

7"'):’3
y(t),..,y(t+p) (3)

respectively, where, y € IR is the output of
the system X,;; and the input of the post-
compensator Y, and § € IR is the scalar
output of the post-compensator system; m
and p are nonnegative integers, m > p, ¥ is
real-analytic function defined on IR™*P+1 In
order to avoid superpositions of the functions
¥ and ¢ in the equations of the extended
system (5), associated to the i/o equations
(1) and (3) (see Section 3), we assume that
n > p. The series connection of systems Xp;
and XY, as a single-input single-output sys-
tem Y. g with input v and output ¢ is shown

on Figure 1.
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Fig. 1. Series connection of two systems

Object and pre-compensator

In Section 4 construction of a pre-compensator
will be considered. In this case the series con-
nection of the pre-compensator X, : u(t +
g) = v(t) and system X,; is considered,
where v € IR is the scalar input of the pre-
compensator X, 4 € IR is the scalar output
of the pre-compensator and the input for
system X,p;.

e Parallel connection of two systems
Consider two systems X.,; and Xp.., de-
scribed by input-output difference equation
(1) and the equation

Ypar 1 Yt +m) =

respectively, where v € IR is the scalar
input for the both systems and ¥ € R
is the scalar output of the second system;
m and p are nonnegative integers, m >
p, v is real analytic function defined on
IR™*P+1_ Under parallel connection of these
two systems we understand a single-input
single-output system X p with input v and
output §(t) = y(t) + §(t), see Figure 2.
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Fig. 2. Parallel connection of two systems

The following problems will be studied in this
paper .

(1) For a non-realizable system X;; find, if pos-
sible, a compensating system X,,. such that
series connection ¥g of two systems is real-
izable

(2) For a non-realizable system X;; find, if pos-
sible, a compensating system ¥, such that
the parallel connection X p of two systems is
realizable.

3. ALGEBRAIC FORMALISM

In order to make this paper self-contained, we
briefly recall the main facts of algebraic formal-
ism, developed in (Aranda-Bricaire et al., 1996),
(Kotta et al., 2001) and generalized for the case
of composite systems in (Némm, 2003).

We consider the series connection of the systems
(1) and (3) as an input-output system Xg and
associate with it an extended state-space system
Yge with input w(t) = u(t + s + 1) and the state

e(t) = [gj(t),...,yA(t +m — 1)7y(t)7'--ay(t+ n—
1),u(t),...,u(t + s)]* defined as
0t +1) = fe(0(), w(t)) (5)
where
fe(eaw) = (027 s 70m5¢(61; e 50m+1)+1)a
Om+2; - s Omtns $Omi1, - - -, Omtntst1),
0m+n+2; [ERE} 9m+n+s+17 O)T + (07 R 07 07 0;

...,0,0,0,...,0,1)Tw.

Below we will use notation of (Kotta et al., 2001).
Let K denote the field of meromorphic functions in
a finite number of variables 6(0),w(t),t > 0. The
forward-shift operator § : K — K is defined by

6¢(6(t), w(t)) = ¢(fe(0(1), w(?)), w(t + 1)).
Lemma 1. The following three statements are
equivalent

e The operator § is one-to-one
e The extended system (5) is submersive

o The following condition is satisfied

(06(),06()" _
35 (1), y(0),u(®))

(6)

rankyx

Under (6) the pair (K, ) is a difference field, and
up to an isomorphism, there exists an unique pair
(K*,0%), called the inversive closure of (K, d), such
that K C K*, 0* : K — K* is an automorphism
and the restriction of d*to K equals to §. We
will assume that (K*,d*) is given and we will
use the same symbol to denote (K,d) and its
inversive closure. Over the field K one can define a
difference vector space £ := spanic{dy | ¢ € K}.
The operator § induces a forward-shift operator
A: & = Eby Y aidg; — Y 6a;d(6:), ai; i €
K. The relative degree r of a one form w € &
is defined to be the smallest integer such that
ATw ¢ spang{df}. If such an integer does not
exist, we set 7 = oo. A sequence of subspaces {Hy }
of £ is defined by

H1 = span,{d6(0)} (7)
Hit1 = {wG’H“AwEHk} k> 1.

Obviously, Hy is a subspace of one-forms with
relative degrees equal to &k or higher than k. It is
easy to see that sequence (7) is decreasing. Denote
by k* the smallest integer such that

HiD...DHp DHiprg1 = Hprq2=... =t Heo

Theorem 2. (Frobenius) Let V = span{w1,
...,wr} be a subspace of £. V is closed if and only
ifdogAwi A...ANw, =0forany k=1,...,r. Here
”A” denotes the wedge product.

Under the conditions of the Frobenius theorem
there exists locally a system of coordinates{(, .. .,
¢r} such that V is generated by {d(i,...,d¢ -}
In this case V is said to be completely integrable
(Choquet-Bruhat et al., 1989).

4. MAIN RESULTS

4.1 Three ways to overcome non-realizability

Necessary and sufficient conditions for the series
and parallel connections of two systems to be
realizable are given in the following theorem.

Theorem 8. (Nomm, 2003) The series connection
Y5 of systems (1) and (3) admits a state-space
realization if and only if for 1 < k < s+ 2, the
subspaces Hj, defined by (7), for the extended
system Y., are completely integrable.



In (N6mm et al., 2004b) it was proved that for
any non-realizable system it is possible to con-
struct a post-compensator of the form §(t + ¢q) =
y(t) such that the series connection is realizable.
Also the algorithm to find the minimal integer
g was presented. However, (Nomm et al., 2004b)
did not consider the cases of serially added pre-
compensator and parallel connection of the sys-
tem and a compensator. The algorithm below is
based on the algorithm proposed in (Nomm et
al., 2004b) and allows to construct a ”compen-
sating system” either as a series pre- or post-
compensator or a compensator added via the par-
allel connection. The algorithm is given on Figure
3; see also remarks below, describing certain steps
in detail.

Remark 1. Implementation of this step is equiva-
lent to calculation the largest integrable subspace
of the subspace H, and completing its basis such
that we get H,.

Remark 2. The value of Ny is given by the highest
order of negative shifts in the basis elements of
non-integrable part of H,.. For example, if a basis
contains a non-integrable element dy(t + k) —
a(§)du(t+ j) where & represents the variable with
negative shifts then by adding to this element
u(t + j)da(§) and adding d¢ (which corresponds
to increasing ¢) to the basis will make the basis
element integrable.

Since one has to calculate the finite number of
subspaces Hy, to check realizability, the algorithm
stops after a finite number of steps with the real-
izable system.

The following theorem generalizes the results of
(NOmm et al., 2004b) including also the cases of
pre-compensator and compensator added via the
parallel connection.

Theorem 4. For any non-realizable system ¥ ,p; of
the form (8) there always exists

(1) a post-compensator X, such that series
connection Xg, of systems X.,; and X,
shown on Figure 1, is realizable.

(2) a pre-compensator X,..such that series con-
nection Xg, of systems X, and X.;, is
realizable.

(3) acompensating system X,,, such that paral-
lel connection X p, of systems X,p; and Xpg
shown on Figure 2, is realizable.

Sketch of the proof. One can demonstrate that
adding forward shifts either in a form of pre-
compensator or in a form of a post-compensator
will guarantee that formerly nonzero wedge-
products dwg Awi A...Aw, where r is the dimen-
sion of the non-integrable subspace,will become

o

Define 3,4 as §(t + q) = y(t)
or

Define %,,. as u(t + q) = v(t)
or

Define Xp,, as g(t + q) = u(t)

Check
realizability of the

composite
system

Calculate for ¥g or Xp
the subspaces 1, ..., H, until
one finds the first

non-integrable subspace H,

Find the elements which cause
non-integrability (see Remark 1)

Find the number of shifts N,
required to overcome non-
integrability (see Remark 2)

q:=q+ N;

STOP!

Fig. 3. Algorithm to build the ”compensating”
system

zero. Alternatively, this can be achieved by using
the parallel compensator. ]

Theorem 5. For any non-realizable system X5, of
the form (1) series compositions constructed by
the algorithms (3) are equivalent.

4.2 Implementation in computer algebra system
Mathematica

In order to illustrate the proposed algorithm
and to show its applicability for the computa-
tional purposes, algorithm depicted on Figure 3



was implemented in the form of sub-package for
computer algebra system Mathematica. This sub-
package contains the following functions:

e SeriesConnection[X¥;,Ys] returns series
composition Y.g of two given systems. The
arguments of this function are ¥;,¥5. To
obtain a composition shown on the Figure
1, call the following sequence
SeriesConnection[¥yp;,%p,s¢]. In order to
define systems ¥,;; and X, one should use
the function DIO described in (Kotta and
T6nso, 2003)

e ParallelConnection[¥;,¥2] returns par-
allel composition ¥ p of two systems. In order
to obtain composition shown on the Figure 2
one should call the following sequence
ParallelConnection[¥p;,Xpar].

e ClosedLoopConnection[¥;,¥5] returns
closed-loop composition g of two systems
(see Reamark 4). Here system X; plays a
role of an object and X5 a role of a feedback
compensator.

® Realizability[X] returns True if the com-
posite system ¥ is realizable and False oth-
erwise. If the system is non-realizable, func-
tion also returns the first non-integrable sub-
space Hy. This function was written for the
NLControl-package (Kotta and Ténso, 2003)
and later modified to handle the case of com-
posite systems.

e PreCompensator [¥,v[t]] constructs a pre-
compensator for the given system ¥ , with
input variable v(t) such that series connec-
tion of it with system ¥ results in a realizable
composition.

e PostCompensator[¥, y[t]] constructs a
post-compensator for the given system X,
with output §(t), such that series connection
of system Y. with it results in a realizable
composition.

e ParallelCompensator[¥, y[t]] constructs
a parallel compensator for the given system
Y, with output 7(¢) such that parallel com-
position is realizable.

e FeedbackCompensator [¥]constructs a feed-
back compensator for the given system X,
such that closed-loop connection of it with
system ¥ results in a realizable composition
(see Remark 3)

e SimplifyConnection[X] for the given series
composition ¥, eliminates variables u(t), .. .,
u(t +m — 1) and returns the corresponding
SISO system (see Reamark 3)

e Realization[X] returns state coordinates
and state equations of the given SISO or
composite system X.. This function was writ-
ten for the NLControl-package (Kotta and
Tonso, 2003) and later modified to handle
the case of composite systems.

Remark 3. Theoretical background for those func-
tions is explained in (Némm et al., 2004b).
Remark 4.

Functions SeriesConnection and
ParallelConnection are used separately when
one has to assemble the composite system or
they are called by the functions PreCompensator,
PostCompensator, ParallelCompensator.

As an example let us consider the following non-
realizable i/o0 equation

y(t+3) =yt +2ut+ 1) +yt+ Du(t)
+ult+2)yt) (8)

and construct a post-compensator such that series
connection of two systems is realizable. According
to the algorithm on Figure 3 we have to connect
to system (1) another system §(t + q) = y(¥)
serially and set the value of g to zero. In Math-
ematica this can be done in the following manner
ioeq=DIO0[y[t+3]-->y[t+2]ult+1]+y[t+1]ult]
+ult+2]y[t],ult],y[t],t]

calling function PostCompensator [ioeq] will ini-
tiate the following sequence.

g=0 the order of post-compensator q is set to zero
pst=DI0[y[t+ql=y[t]1] defines post-compensator
of order ¢

3s= SeriesConnection[ioeq,pst] returns se-
ries connection of the initial system and post-
compensator

Realizability[¥ ]checks if composition ¥, is
realizable

False

H3=Span{dy[t],dy[t+1],dy[t+2]
-y[t-11dult+1],dult]} Composition is not re-
alizable since the subspace H3 is not integrable.
As the next step, function searches for the element
of the basis which causes non-integrability. Non-
integrability is caused by the element dg(t + 2) —
9(t — 1)du(t + 1). Because of the backward shift
term y(t — 1) the order of post-compensator ¢ is
increased by one. The function PostCompensator
increases now ¢q by 1

g=q+1 now the order of the post-compensator
g(t + 1) = y(t) is equal to 1. The function
PostCompensator calls again the sequence of
functions described above.
pst=DI0[y[t+ql=y[t]]

3s= SeriesConnection[ioeq,pst]
Realizability[¥,]

False

H4=span {dgl[t+1],dj[t+2]-g[t-1]1 du(t),
dg[t+3]-g[tldult+1]-j[t+2] ,dult],dg(t) }
The system is not realizable since the subspace
Hs of the composite system is not integrable.
Non-integrability is caused by the element g(¢t +
2) —§(t —1)du(t). The function PostCompensator
again calls the following sequence.

g=q+1

pst=DI0[y[t+ql=y[t]]



3s= SeriesConnection[ioeq,pst]
Realizability[¥,]

True the composition is realizable.
PostCompensator returns the post-compensator
Ypst=y[t+2]=y[t]. Series connection of the sys-
tem (8) with the post-compensator §(t+2) = y(t)
is realizable. By applying function
Realization[¥Xg] one can get the state coor-
dinates and state-space equations for the se-
ries connection of the system (8) and the post-
compensator §(t + 2) = y(t).

x1 (E+1)=x2(t) x(t+1)=x3(t)

x3 (t+1)=x4(t)+x1 (t)u(t)

x4 (£+1) =x5 (£ +u () (x4 (£) +x1 (£ u(t))

x5 (£+1)=(xg+x (B)u(t))ult) y(e)=x1(¢)

5. CONCLUSIONS

This paper studies the realization of the compos-
ite systems of the discrete-time nonlinear input-
output systems. It has been proved that for any
non- realizable system there exists a ”compen-
sating system” such that the series connection
or/and parallel connections are realizable. A con-
structive algorithm to obtain a compensating sys-
tem is presented. Relationship between the pre
and post-compensated systems are characterized.
Implementation of the algorithm in the computer
algebra system is discussed and illustrated by the
example. Note that realization of continuous-time
nonlinear composite systems is still an open prob-
lem.
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