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Abstract: A state observer is proposed for a class of multi-output nonlinear systems.
The gain of this observer involves a design function that has to satisfy some mild

conditions which are given. Different expressions of such a function are proposed. Of
particular interest, it is shown that high gain observers and sliding mode like observers
can be derived by considering particular expressions of the design function. A simulation
example is given in order to compare the performance of a high gain observer and a
sliding mode like observer obtained through two different choices of the design function.
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1. INTRODUCTION and it is shown that high gain observers (Bornard
and Hammouri, 1991; Gauthiest al, 1992; Ham-
mouri and Farza, 2003; Fareaal.,, 2004) and sliding

In spite of the intensive research efforts made during mode like observers (Utkin, 1992; Drakunov, 1992;
the last two decades, the observer synthesis for MIMO prakunov and Utkin, 1995; Filipesat al, 2003) can

nonlinear systems still be an open problem (Gauthier pe derived by considering particular expressions of the
and Bornard, 1981; Nijmeijer, 1981; Krener and design function.

Isidori, 2003; Krener and Respondek, 1985; Xia and Thjs paper is organized as follows. In the next section,
Gao, 1989; Gauthieet al, 1992; G. Ciccarella and  one introduces the class of nonlinear systems which
Germani, 1993; Bornard and Hammouri, 1991; Gau- wjll be the basis of the observer design. Section 3 is
thier and Kupka, 1994; Hou and Pugh, 1999; Ham- deyoted to the observer design: a state transformation
mouri and Farza, 2003)). This paper deals with the js introduced and the equations of the proposed ob-
design of observers for a special class of MIMO non- server are firstly given in the new coordinates before
linear systems satisfying some regularity assumptions.peing generated in the original ones. In section 4,
The main characteristics of the proposed observer liegjfferent expressions of the observer gain are proposed
in its simplicity and its capability to give rise to dif-  and one shows that some of these expressions give rise
ferent observers among which high gain observersig state observers which structures are similar to those
and sliding mode observers. Indeed, the gain of theof high gain observers and sliding mode observers.
proposed observer involves a design function that hasjy section 5, a simulation example is given in order

to satisfy some mild conditions which are given. Dif- o compare the performance of a high gain observer
ferent expressions of the design function are proposed



and a sliding mode like observer obtained through two systems. In (Farzat al, 2004), the authors consid-

different choices of the observer gain expression. ered a subclass of systems which involve the same
uncertain termg(¢), as (1). In the sequel, one shall use
a strategy of observer design similar to that adopted

2. PROBLEM FORMULATION in (Hammouri and Farza, 2003; Farea al, 2004)
to construct a state observer for a class of MIMO
Consider MIMO systems of the form : nonlinear systems including systems considered in the
just mentioned works.
&= f(u,x)+et)
{o2feo; ®
1 Yu, zt, 2?) 3. OBSERVERS DESIGN
iQ fz(u,xl,x2,x3)
withz = | | ; flu,z) = : ; One shall firstly introduce an appropriate state trans-
: F (u, ) formation allowing to easily design the proposed ob-
q ’ . .
z F(u, z) servers. Then, the equations of these observers will be
’ derived in the new coordinates before being given in
0 £ the original ones.
= ¢ |e=| :
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3.1 State transformation

C = sy Onyscng Oy -5 Onasen | (2) Consider the following change of coordinates:

where the state € R" with 2* ¢ R™,k=1,...,q a! 2!
q 22 22

andp = ny > ny > ... an,an:n; ¢:R" — R™, = ) =z = . =

k=1 ' :
the inputu(t) € U the set of bounded absolutely zd 21
continuous functions with bounded derivatives from x!
R into U a compact subset of R f(u,z) € R" fHu, zt, 2?)
with f*(u,z) € R™; &(t) € R" wheree(t) € aoft L o2, 1 9 3
R"e with eache;, i = 1,...,n, being an unknown B(u, 7) = @(“vx yat) [ (u, a2, 2)
bounded real-valued function which may depend:pn ’
u, uncertain parameters, etc. Our objective consists in g—2 X '
designing state observers for system (1). Such a design H of (u,2) | F7 " (u, z)
necessitates some assumptions which will be stated in = Qi1 7
due course. At this step, one assumes the following: X - :
(A1) Each functionf” (u, z), k = 1, ..., ¢—1 satisfies wherez" € R™, k =1,...,q. According to assump-

tions (A1) and (A2), the mag is one to one. Le®°
denote its converse. Before deriving the dynamics of
z, let us introduce the following notations :

the following rank condition:

o k . . .
Rank (&:W(u’x)> = Vo € RYYueU e A(u, x) is the diagonal matrix:
Moreoverda, 8 > 0 such thatforalk € {1,...,q — ] oft oft of?
1}, vz € R", Vu € U, A(u, z) =diag | I,,, @(u,x), @(u,x)@(u,mL
of* T oofk o oaft
a2[’”«k+1 S <axk+1(u,x)> W(Ujl’) S ﬁQI’"«kJrl ey W(U,l‘) (3)
k=1
wherel,, ., is the(ngy1) x (ng41) identity matrix.
(A2) For 1 < k (<k;1), 1,( tﬁgliunctionyxkﬂ s Notice that according to Assumption (A1)(u, ) is
FE(u,at,. .., 2%, 25+1) is one to one from R:+ left invertible. One shall denote by (u, z) its left
into R . inverse. Now, one can easily check that:
(A3) The functione(¢) is uniformly bounded by >
0. A(u, z) f(u, ) = Az + G(u, x) or equivalently

flu,2) = At (u,2)Az + AT (u, 2)G(u,x)  (4)
Whene = 0, system (1) is identical to that consid-
ered in (Hammouri and Farza, 2003) and it charac- where then;q x niq square matrix4 and the vector
terizes a subclass of locally-uniformly observable field G(u,x) € R™'? are respectively given by:



01, 0 0
A= Iny 00 (5)
0 DN
0 0 0
0
G(u,z) = 0
g—1 k
of
(H W(“ﬁ)) fi(u, )
ki

Proceeding as in (Hammouri and Farza, 2003; Farza

et al, 2004), one can show that the transformation
puts system (1) under the following form:

{ i=Az+p(u,z) + %(u,w)dt) (©)
y=Cz=2z'

wherey(u, z) has a triangular structure i.e.

@' (u, 2")
¢ (u, 2, 2%)
©?(u, z)
with ¥ (u,z) € R™,k=1,...,qand
C=1In,0n,,...,0n] (7

iSny x nig matrix with0,,, denoting thex; x ny null
matrix.

3.2 Observers synthesis

definite.

51

3) V¢ = : € R™? with ¢ ¢ R™, k =
gq

1,...,q, seté = Ay¢ and let K(€)

K'(e

K7())

1,...,q be avector of smooth functions satisfying:

€ R™7 with Kk(¢') € R™, k =

Ve e R ETK(¢Y) > %gTCTcg (10)
Jo >0 e R K€Y < o'l (11)

where the matriced\y and C' are respectively given
by (8) and (7).

A candidate observer for system (6) is:

2(t)= Az + p(u, 2) — 0A, P STIK (31
O

- 5 (1 #(2)

<A+<u,<1>6<z>> - (gf<u,¢c<z>>)+>

0A, ' STIK(2Y) (12)

1
2

ISTRR 3

where? = e R™9 with 28 ¢ R™, k =

ZAQ
1,...,q; S, C andAy are respectively given by equa-
tions (9), (7) and (8)2 = zZ—z wherez is the unknown
trajectory of system (6)K(2) € R™¢1 satisfies con-
ditions (10) and (11)y is the input of system (6) and
6 > 0is a real number.

As in the works related to the high gain observers | 4eed one states the following :

synthesis (Bornard and Hammouri, 1991; Gautketer
al., 1992; Farzat al, 2004), one assumes that:

(A4) The functionsb(u, ®¢(z)) andy(u, z) are glob-
ally Lipschitz with respect ta uniformly in .

Before giving our candidate observers, one introduces

the following notations.
1) let Ay be the block diagonal matrix defined by

1

1
71"17""0(17—1[”1

17 0
wheref > 0 is a real number

Ay = diag | I, (8)

2) Let S be the unique solution of the algebraic Lya-
punov equation :

S+ATS+8SA-CTC=0 9

whereA andC are respectively given by equations (5)
and (7). One can show that is symmetric positive

Theorem 1.Assume that system (6) satisfies Assump-
tions (Al) to (A4). Then,

309 > 0; VO > 0y; X > 0; Jug > 0; IMy > 0;
Vu € U; V2(0) € R™4; one has:
12(t) = 2(t)]| < A0T~ e 0|2(0) — 2(0)]| + Moo

wherez(t) is the unknown trajectory of (6) associated
to the inputu, 2(¢) is any trajectory of system (12)
associated tdu, y) andd is the upper bound dfe||.
Moreover, one hagingo He = +00 andgliﬂn;0 My = 0.

Proof of Theorem 1: One has:

F=AZ —0A, ' STIK(ZY) + o(u, 2) — p(u, 2)
0P

- a—x(u, °(2))e(t) — I'(u, 2)0A, ' ST K (2Y)



wherel'(u, 2) = where~y > 0 is a constant that does not depend on
oD .. N .. ob o\ T 6. Finally, according to the structure efand since
%(u@ () (A (u, 25(2)) = (&r(u’(p (Z))) ) 8—@(%@‘3(,3)) is triangular, one can show that:

Notice thatl'(u, 2) is a lower triangular matrix with

zeros on its main diagonal. Moreover, using Assump- ob ga—1

tion (A1) and (A4), one can easily deduce thét, 2) 1805 (u, 2%(2))e(t) < oz 0 (16)

is bounded. ) ) )

Now, one can easily check the following identities: Whered = sup le(@)]| given in Assumption (A3) and

0N, ANy = AandCAy = C. Setz = Apz.One  gis given in (AL). Using inequalities (14), (15), (11)

ox

obtains: and (16) inequality (13) becomes:
2=0Az = 9ST K (2") + Ag (p(u, 2) — p(u, 2)) V <=0V + 22 max (S)[12] (CI1Z]) + volIZ])
oP SN A -1 a1 g1 q—1
= Do (u, @(2))a(t) — 080T (u, £) AT ST (2 +2Amam(s)§q715“2”
Consider the quadratic functidn(z) = z7 Sz, then <—(0—e)V + 2 sV
< a1
vV =2:T8z wherec; = 202%(S)(¢ + vo) and
_ QHZTSAE _ 292TK(21) co = 26(1_10'(5) )\mam(s) with )\mm(S) and
o . Amaz(S) being respectively the smallest and the
+2z SA@(@(“? Z) - QD(U7 Z))
e 0P S largest eigenvalues of ando (S) = )\’”“71(5)
-2z SA@%(MQ) (Z))E(t) )\min(S)
opT AA—1a—17-021 Now takingf, = max {1, ¢; } and using the fact that
SR ) for 0 > 1, (1)) < (0 < 67! (1)], one can
=0V +0z°C"Cz 202" K(Z') show that for > 6, one has :
+22TSA0(()0(U7 2) - QD(’U,, Z))
- _ 0—c -
27580 2 1, 02 0l <o as)em |- (252 ) 1001
X
—202TSAT (u, 2) A, SR (21) L oggrt a2(S)
by equation (9). (0 =)
Using (10), one obtains: It is easy to see thak, uy and é\?/[g needed by the
theorem are\ = o(S), pg = _201 and M, =
o O At 2
Vi=—ov20 <2Z ¢z -2 K(E) Zﬂql(;}(s)).This ends the proof.
— C
+257S 8 (p(u, 2) — p(u,2) 1
_ 0P SN
—2ZT5A9%(U, °(2))e(t) 3.3 Observers equations in the original coordinates
=T AA—1o—17-/21
—2027 SAgL(u, 2)A, ST K(27) Proceeding as in (Farzt al, 2004), one can show
<=0V + 22T SNg(p(u, 2) — (u, 2)) that observer (12) can be written in the original coor-
D dinatesr as follows:
—22TSA9%C (u, ®°(2))&(t)
—205T SN (u, 2)A; TSR () (13) &= flu,2) — OAT (u,2)A;'STIK (2 (17)
Now, assume that > 1, then, because of the triangu- WwhereS, C, Ay andA™ (u, z) are given abovei =
lar structure and the Lipschitz assumption gnone !
can show that : 2

€ R™ with &* € R™, k = 1,...,q; u the

180 (p(u,2) = p(w,2)) | <Cl2ll - (24) | 4o
input of system (1) and = & — = wherex is the

where( is a contant that does not depend t(see ,
unknown trajectory of system (1).

(Gauthieret al, 1992)). Similarly, according to as-
sumption (Al) and to the Lipschitz assumption on
® (Assumption (A4))I'(u, 2) is bounded. Moreover,
and sincd’(u, 2) is lower triangular with zeros on the

main diagonal, one has: Some expressions @ (') that satisfying conditions

(10) and (11) shall be given in this section and the so-
026 (u, 2)A5 | <~ foro > 1 (15) obtained observers are discussed. These expressions

4. SOME PARTICULAR OBSERVERS



will be given in the new coordinates in order to inverse sinus function, etc., also constitute valid ex-

easily check conditions (10) and (11) as well as in the pressions forK (Z). Besides, one can consider new

original coordinates: in order to easily recognize the valid expressions folk'(2) by adding Krq,,(2) to

structure of the resulting observers. Kpna(2). This gives rise to a sliding mode observer
similar to that used in (Filipescet al., 2003).

4.1 High gain observers
} 5. EXAMPLE

Consider the following expression &f(¢):
Consider the following dynamical system:

Kug(3)=CTCcz=C"#

= CT3 = 0TC3 (18) o1 = (0 = 21)a5 + un
To = T1T3 — Ta + U2
One can easily check that expression (18) satisfies i3 = —k123 + 24(1 + kox}) (21)
conditions (10) and (11). Replacing(z) by ex- ta = e(t)
pression (18) in (17) gives rise to a high gain ob- y = (1 x2)T
server (see e.g. (Gauthietral, 1992; Hammouri and
Farza, 2003; Farzet al, 2004)). wherez = (z1 x5 23 z4)" € R, a > 0,k > 0

are constant real parametetisz (u; us)? € R? and

y = (21 x2)T respectively denote the measured inputs
4.2 Sliding mode like observers and outputs, and stands for any unknown bounded

function. It is easy to see that system (21) is under

H _ 1 _ T 2 _
At first glance, the following vector seems to be a fogrm (1) withg = 3andz’ = (z1 22)", 2% = 3,

potential candidate for the expressionfofz): Lo = T4. o _ )
System (21) is similar to that considered in (Faeta

. o o al., 2004) and the authors constructed asethich is

K(2) = kC" Csign(z) = kC” sign(2”) positively invariant under the dynamics of (21). Using
=kCTsign(z') = kCTCsign(z) (19)  this fact, one can easily check Assumptions (A1) to

(A4) and observers under form (17) can then be used

where k> 0 is a real number and 'sign’ is the 4 estimate the trajectories of system (21). One shall

. =1
sign(Z;) give in what follows two sets of results provided by
usual sign function withign(z!) = : , a high gain observer (obtained by using expression
sign(z} ) (18) in (17) and and by a sliding mode like observer

z} € R,i = 1,...,n;. Indeed, condition (10) is (obtained by using expression (20) in (17)).
trivially satisfied by (19). Similarly, for bounded in- In _order to simulate practical situations and before
put bounded output systems, condition (11) is also P€iNg used by the observers, each of the measure-
satisfied for relatively high values @ However, ex- ~ Ments ofz; andz, has been corrupted by a uniformly
pression (19) cannot be used due the discontinuity ofdistributed random signal produced by SIMULINK
sign function. Indeed, such discontinuity makes the With zero mean value and a standard deviation to
stability problem not well posed since the Lyapunoy 0-33: The true time evolutions of3 andz, (issued
method used throughout the proof is not valid. In order rom model simulation) with their respective estimates
to overcome these difficulties, one shall use continu- Provided by the high gain observer are compared in
ous functions which have similar properties that those figure 1. Figure 2 shows the same resuits obtained
of the sign function. This approach is widely used with the sliding mode like observer. For simulation

when implementing sliding mode observers. Indeed, PUrPoses, the time evolution of, has been specified
consider the following function: as a trapezoidal signal varying betweHi and 40,

u1(t) = 100 cos(wt), ug(t) = 100sin(nt), a = 5,
k1 = 0.02 andk, = 10~%. The employed value dof

The Tanh function: was 50 in both observer and the value of the parameter
k was equal tal in the sliding mode observer. The
Krann(2) = kCTC’Tcmh(Z) = kC’TTanh(él) initial conditions for the model and the observer are:
= kCTTanh(i') = kCTCTanh(z) 21(0) = £1(0) = 0; 22(0) = 22(0) = 0; 25(0) = 5;

Z3(0) = 1; 24(0) = 0. Figures 1 and 2 show the
(20) good agreement between the estimated and simulated
variables. Recall that the time evolution of the state
considered for simulation purposes is ignored by the
observers.

The obtained results clearly show similar behaviours
Similarly to the hyperbolic tangent function, one can of both observers. In fact, many other numerical simu-
easily check that the inverse tangent function, the lations have been carried out and they do confirm such

whereT'anh denotes the hyperbolic tangent function
andk > 0 is a real number.
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Fig. 1. Estimation results with high gain observer
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Fig. 2. Estimation results with sliding mode observer

a fact.

Conclusion: A set of observers has been designed
for a class of nonlinear systems. The appealing fea-
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