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Abstract: A state observer is proposed for a class of multi-output nonlinear systems.
The gain of this observer involves a design function that has to satisfy some mild
conditions which are given. Different expressions of such a function are proposed. Of
particular interest, it is shown that high gain observers and sliding mode like observers
can be derived by considering particular expressions of the design function. A simulation
example is given in order to compare the performance of a high gain observer and a
sliding mode like observer obtained through two different choices of the design function.
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1. INTRODUCTION

In spite of the intensive research efforts made during
the last two decades, the observer synthesis for MIMO
nonlinear systems still be an open problem (Gauthier
and Bornard, 1981; Nijmeijer, 1981; Krener and
Isidori, 2003; Krener and Respondek, 1985; Xia and
Gao, 1989; Gauthieret al., 1992; G. Ciccarella and
Germani, 1993; Bornard and Hammouri, 1991; Gau-
thier and Kupka, 1994; Hou and Pugh, 1999; Ham-
mouri and Farza, 2003)). This paper deals with the
design of observers for a special class of MIMO non-
linear systems satisfying some regularity assumptions.
The main characteristics of the proposed observer lie
in its simplicity and its capability to give rise to dif-
ferent observers among which high gain observers
and sliding mode observers. Indeed, the gain of the
proposed observer involves a design function that has
to satisfy some mild conditions which are given. Dif-
ferent expressions of the design function are proposed

and it is shown that high gain observers (Bornard
and Hammouri, 1991; Gauthieret al., 1992; Ham-
mouri and Farza, 2003; Farzaet al., 2004) and sliding
mode like observers (Utkin, 1992; Drakunov, 1992;
Drakunov and Utkin, 1995; Filipescuet al., 2003) can
be derived by considering particular expressions of the
design function.
This paper is organized as follows. In the next section,
one introduces the class of nonlinear systems which
will be the basis of the observer design. Section 3 is
devoted to the observer design: a state transformation
is introduced and the equations of the proposed ob-
server are firstly given in the new coordinates before
being generated in the original ones. In section 4,
different expressions of the observer gain are proposed
and one shows that some of these expressions give rise
to state observers which structures are similar to those
of high gain observers and sliding mode observers.
In section 5, a simulation example is given in order
to compare the performance of a high gain observer



and a sliding mode like observer obtained through two
different choices of the observer gain expression.

2. PROBLEM FORMULATION

Consider MIMO systems of the form :

{
ẋ = f(u, x) + ε̄(t)
y = C̄x = x1 (1)

with x =




x1

x2

...
xq


 ; f(u, x) =




f1(u, x1, x2)
f2(u, x1, x2, x3)

...
fq−1(u, x)
fq(u, x)




;

ε̄(t) =




0
...
0

ε(t)


 ε =




ε1

...
εnq




C̄ = [In1 , 0n1×n2 , 0n1×n3 , . . . , 0n1×nq ] (2)

where the statex ∈ IRn with xk ∈ IRnk , k = 1, . . . , q

and p = n1 ≥ n2 ≥ . . . ≥ nq,
q∑

k=1

nk = n;

the input u(t) ∈ U the set of bounded absolutely
continuous functions with bounded derivatives from
IR+ into U a compact subset of IRs; f(u, x) ∈ IRn

with fk(u, x) ∈ IRnk ; ε̄(t) ∈ IRn where ε(t) ∈
IRnq with eachεi, i = 1, . . . , nq being an unknown
bounded real-valued function which may depend onx,
u, uncertain parameters, etc. Our objective consists in
designing state observers for system (1). Such a design
necessitates some assumptions which will be stated in
due course. At this step, one assumes the following:
(A1) Each functionfk(u, x), k = 1, . . . , q−1 satisfies
the following rank condition:

Rank

(
∂fk

∂xk+1
(u, x)

)
= nk+1 ∀x ∈ IRn; ∀u ∈ U

Moreover∃α, β > 0 such that for allk ∈ {1, . . . , q −
1}, ∀x ∈ IRn, ∀u ∈ U ,

α2Ink+1 ≤
(

∂fk

∂xk+1
(u, x)

)T
∂fk

∂xk+1
(u, x) ≤ β2Ink+1

whereInk+1 is the(nk+1)× (nk+1) identity matrix.
(A2) For 1 ≤ k ≤ q − 1, the functionxk+1 7→
fk(u, x1, . . . , xk, xk+1) is one to one from IRnk+1

into IRnk .
(A3) The functionε(t) is uniformly bounded byδ >
0.

Whenε = 0, system (1) is identical to that consid-
ered in (Hammouri and Farza, 2003) and it charac-
terizes a subclass of locallyU -uniformly observable

systems. In (Farzaet al., 2004), the authors consid-
ered a subclass of systems which involve the same
uncertain term,ε(t), as (1). In the sequel, one shall use
a strategy of observer design similar to that adopted
in (Hammouri and Farza, 2003; Farzaet al., 2004)
to construct a state observer for a class of MIMO
nonlinear systems including systems considered in the
just mentioned works.

3. OBSERVERS DESIGN

One shall firstly introduce an appropriate state trans-
formation allowing to easily design the proposed ob-
servers. Then, the equations of these observers will be
derived in the new coordinates before being given in
the original ones.

3.1 State transformation

Consider the following change of coordinates:

Φ : IRn −→ IRn1q, x =




x1

x2

...
xq


 7→ z =




z1

z2

...
zq


 =

Φ(u, x) =




x1

f1(u, x1, x2)
∂f1

∂x2
(u, x1, x2)f2(u, x1, x2, x3)

...(
q−2∏

k=1

∂fk

∂xk+1
(u, x)

)
fq−1(u, x)




wherezk ∈ IRn1 , k = 1, . . . , q. According to assump-
tions (A1) and (A2), the mapΦ is one to one. LetΦc

denote its converse. Before deriving the dynamics of
z, let us introduce the following notations :
• Λ(u, x) is the diagonal matrix:

Λ(u, x) = diag

(
In1 ,

∂f1

∂x2
(u, x),

∂f1

∂x2
(u, x)

∂f2

∂x3
(u, x),

. . . ,

q−1∏

k=1

∂fk

∂xk+1
(u, x)

)
(3)

Notice that according to Assumption (A1),Λ(u, x) is
left invertible. One shall denote byΛ+(u, x) its left
inverse. Now, one can easily check that:

Λ(u, x)f(u, x) = Az + G(u, x) or equivalently

f(u, x) = Λ+(u, x)Az + Λ+(u, x)G(u, x) (4)

where then1q × n1q square matrixA and the vector
field G(u, x) ∈ IRn1q are respectively given by:



A =




0 In1 0 0
...

. . . In1

.. . 0

0
.. .

.. . In1

0 . . . 0 0




(5)

G(u, x) =




0
...
0

(
q−1∏

k=1

∂fk

∂xk+1
(u, x)

)
fq(u, x)




Proceeding as in (Hammouri and Farza, 2003; Farza
et al., 2004), one can show that the transformationΦ
puts system (1) under the following form:

{
ż = Az + ϕ(u, z) +

∂Φ
∂x

(u, x)ε̄(t)

y = Cz = z1
(6)

whereϕ(u, z) has a triangular structure i.e.

ϕ(u, z) =




ϕ1(u, z1)
ϕ2(u, z1, z2)

...
ϕk(u, z1, . . . , zk)

...
ϕq(u, z)




with ϕk(u, z) ∈ IRn1 , k = 1, . . . , q and

C = [In1 , 0n1 , . . . , 0n1 ] (7)

is n1×n1q matrix with0n1 denoting then1×n1 null
matrix.

3.2 Observers synthesis

As in the works related to the high gain observers
synthesis (Bornard and Hammouri, 1991; Gauthieret
al., 1992; Farzaet al., 2004), one assumes that:
(A4) The functionsΦ(u, Φc(z)) andϕ(u, z) are glob-
ally Lipschitz with respect toz uniformly in u.
Before giving our candidate observers, one introduces
the following notations.
1) let∆θ be the block diagonal matrix defined by

∆θ = diag

[
In1 ,

1
θ
In1 , . . . ,

1
θq−1

In1

]
(8)

whereθ > 0 is a real number

2) Let S be the unique solution of the algebraic Lya-
punov equation :

S + AT S + SA− CT C = 0 (9)

whereA andC are respectively given by equations (5)
and (7). One can show thatS is symmetric positive

definite.

3) ∀ξ =




ξ1

...
ξq


 ∈ IRn1q with ξk ∈ IRn1 , k =

1, . . . , q, set ξ̄ = ∆θξ and letK(ξ) ∆= K(ξ1) =


K1(ξ1)
...

Kq(ξ1)


 ∈ IRn1q with Kk(ξ1) ∈ IRn1 , k =

1, . . . , q be a vector of smooth functions satisfying:

∀ξ ∈ IRn1q : ξ̄T K(ξ1) ≥ 1
2
ξT CT Cξ (10)

∃σ > 0;∀ξ ∈ IRn1q : ‖K(ξ1)‖ ≤ σ‖ξ1‖ (11)

where the matrices∆θ andC are respectively given
by (8) and (7).

A candidate observer for system (6) is:

˙̂z(t) = Aẑ + ϕ(u, ẑ)− θ∆−1
θ S−1K(z̃1)

− ∂Φ
∂x

(u, Φc(ẑ))
(

Λ+(u, Φc(ẑ))−
(

∂Φ
∂x

(u, Φc(ẑ))
)+

)

θ∆−1
θ S−1K(z̃1) (12)

where ẑ =




ẑ1

ẑ2

...
ẑq


 ∈ IRn1q with ẑk ∈ IRn1 , k =

1, . . . , q; S, C and∆θ are respectively given by equa-
tions (9), (7) and (8);̃z = ẑ−z wherez is the unknown
trajectory of system (6);K(z̃) ∈ Rn1q satisfies con-
ditions (10) and (11);u is the input of system (6) and
θ > 0 is a real number.
Indeed one states the following :
Theorem 1.Assume that system (6) satisfies Assump-
tions (A1) to (A4). Then,

∃θ0 > 0; ∀θ > θ0; ∃λ > 0; ∃µθ > 0; ∃Mθ > 0;

∀u ∈ U ; ∀ẑ(0) ∈ Rn1q; one has:

‖ẑ(t)− z(t)‖ ≤ λθq−1e−µθt‖ẑ(0)− z(0)‖+ Mθδ

wherez(t) is the unknown trajectory of (6) associated
to the inputu, ẑ(t) is any trajectory of system (12)
associated to(u, y) andδ is the upper bound of‖ε‖.
Moreover, one haslim

θ→∞
µθ = +∞ and lim

θ→∞
Mθ = 0.

Proof of Theorem 1:One has:

˙̃z = Az̃ − θ∆−1
θ S−1K(z̃1) + ϕ(u, ẑ)− ϕ(u, z)

− ∂Φ
∂x

(u, Φc(z))ε̄(t)− Γ(u, ẑ)θ∆−1
θ S−1K(z̃1)



whereΓ(u, ẑ) =
∂Φ
∂x

(u, Φc(ẑ))

(
Λ+(u, Φc(ẑ))−

(
∂Φ
∂x

(u, Φc(ẑ))
)+

)
.

Notice thatΓ(u, ẑ) is a lower triangular matrix with
zeros on its main diagonal. Moreover, using Assump-
tion (A1) and (A4), one can easily deduce thatΓ(u, ẑ)
is bounded.
Now, one can easily check the following identities:
θ∆−1

θ A∆θ = A andC∆θ = C. Setz̄ = ∆θ z̃. One
obtains:

˙̄z = θAz̄ − θS−1K(z̃1) + ∆θ (ϕ(u, ẑ)− ϕ(u, z))

−∆θ
∂Φ
∂x

(u, Φc(z))ε̄(t)− θ∆θΓ(u, ẑ)∆−1
θ S−1K(z̃1)

Consider the quadratic functionV (z̄) = z̄T Sz̄, then

V̇ = 2z̄T S ˙̄z

= 2θz̄T SAz̄ − 2θz̄T K(z̃1)

+2z̄T S∆θ(ϕ(u, ẑ)− ϕ(u, z))

−2z̄T S∆θ
∂Φ
∂x

(u, Φc(z))ε̄(t)

−2θz̄T S∆θΓ(u, ẑ)∆−1
θ S−1K(z̃1)

=−θV + θz̄T CT Cz̄ − 2θz̄T K(z̃1)

+2z̄T S∆θ(ϕ(u, ẑ)− ϕ(u, z))

−2z̄T S∆θ
∂Φ
∂x

(u, Φc(z))ε̄(t)

−2θz̄T S∆θΓ(u, ẑ)∆−1
θ S−1K(z̃1)

by equation (9).
Using (10), one obtains:

V̇ =−θV + 2θ

(
1
2
z̄T CT Cz̄ − z̄T K(z̃1)

)

+2z̄T S∆θ(ϕ(u, ẑ)− ϕ(u, z))

−2z̄T S∆θ
∂Φ
∂x

(u, Φc(z))ε̄(t)

−2θz̄T S∆θΓ(u, ẑ)∆−1
θ S−1K(z̃1)

≤−θV + 2z̄T S∆θ(ϕ(u, ẑ)− ϕ(u, z))

−2z̄T S∆θ
∂Φ
∂x

(u, Φc(z))ε̄(t)

−2θz̄T S∆θΓ(u, ẑ)∆−1
θ S−1K(z̃1) (13)

Now, assume thatθ ≥ 1, then, because of the triangu-
lar structure and the Lipschitz assumption onϕ, one
can show that :

‖∆θ (ϕ(u, ẑ)− ϕ(u, z)) ‖ ≤ ζ‖z̄‖ (14)

whereζ is a contant that does not depend onθ (see
(Gauthieret al., 1992)). Similarly, according to as-
sumption (A1) and to the Lipschitz assumption on
Φ (Assumption (A4)),Γ(u, ẑ) is bounded. Moreover,
and sinceΓ(u, ẑ) is lower triangular with zeros on the
main diagonal, one has:

‖θ∆θΓ(u, ẑ)∆−1
θ ‖ ≤ γ for θ ≥ 1 (15)

whereγ > 0 is a constant that does not depend on
θ. Finally, according to the structure ofε and since
∂Φ
∂x

(u, Φc(z)) is triangular, one can show that:

‖∆θ
∂Φ
∂x

(u, Φc(z))ε̄(t)‖ ≤ βq−1

θq−1
δ (16)

whereδ = sup
t≥0

‖ε(t)‖ given in Assumption (A3) and

β is given in (A1). Using inequalities (14), (15), (11)
and (16) inequality (13) becomes:

V̇ ≤−θV + 2λmax(S)‖z̄‖ (
ζ‖z̄‖+ γσ‖z̃1‖)

+ 2λmax(S)
βq−1

θq−1
δ‖z̄‖

≤−(θ − c1)V +
c2

θq−1
δ
√

V

wherec1 = 2σ2(S)(ζ + γσ) and
c2 = 2βq−1σ(S)

√
λmax(S) with λmin(S) and

λmax(S) being respectively the smallest and the

largest eigenvalues ofS andσ(S) =

√
λmax(S)
λmin(S)

.

Now takingθ0 = max {1, c1} and using the fact that
for θ ≥ 1, ‖z̄(t)‖ ≤ ‖z̃(t)‖ ≤ θq−1‖z̄(t)‖, one can
show that forθ > θ0, one has :

‖z̃(t)‖ ≤ θq−1σ(S) exp
[
−

(
θ − c1

2

)
t

]
‖z̃(0)‖

+ 2βq−1 σ2(S)
(θ − c1)

δ

It is easy to see thatλ, µθ and Mθ needed by the

theorem are:λ = σ(S), µθ =
θ − c1

2
and Mθ =

2βq−1 σ2(S)
(θ − c1)

.This ends the proof.

3.3 Observers equations in the original coordinates

Proceeding as in (Farzaet al., 2004), one can show
that observer (12) can be written in the original coor-
dinatesx as follows:

˙̂x = f(u, x̂)− θΛ+(u, x̂)∆−1
θ S−1K(x̃1) (17)

whereS, C, ∆θ andΛ+(u, x) are given above,̂x =


x̂1

x̂2

...
x̂q


 ∈ IRn with x̂k ∈ IRnk , k = 1, . . . , q; u the

input of system (1) and̃x = x̂ − x wherex is the
unknown trajectory of system (1).

4. SOME PARTICULAR OBSERVERS

Some expressions ofK(x̃1) that satisfying conditions
(10) and (11) shall be given in this section and the so-
obtained observers are discussed. These expressions



will be given in the new coordinatesz in order to
easily check conditions (10) and (11) as well as in the
original coordinatesx in order to easily recognize the
structure of the resulting observers.

4.1 High gain observers

Consider the following expression ofK(ξ̃):

KHG(z̃) = CT Cz̃ = CT z̃1

= CT x̃1 = CT C̄x̃ (18)

One can easily check that expression (18) satisfies
conditions (10) and (11). ReplacingK(z̃) by ex-
pression (18) in (17) gives rise to a high gain ob-
server (see e.g. (Gauthieret al., 1992; Hammouri and
Farza, 2003; Farzaet al., 2004)).

4.2 Sliding mode like observers

At first glance, the following vector seems to be a
potential candidate for the expression ofK(z̃):

K(z̃) = kCT Csign(z̃) = kCT sign(z̃1)

= kCT sign(x̃1) = kCT C̄sign(x̃) (19)

where k > 0 is a real number and ’sign’ is the

usual sign function withsign(z̃1) =




sign(z̃1
1)

...
sign(z̃1

n1
)


,

z̃1
i ∈ IR, i = 1, . . . , n1. Indeed, condition (10) is

trivially satisfied by (19). Similarly, for bounded in-
put bounded output systems, condition (11) is also
satisfied for relatively high values ofk. However, ex-
pression (19) cannot be used due the discontinuity of
sign function. Indeed, such discontinuity makes the
stability problem not well posed since the Lyapunov
method used throughout the proof is not valid. In order
to overcome these difficulties, one shall use continu-
ous functions which have similar properties that those
of the sign function. This approach is widely used
when implementing sliding mode observers. Indeed,
consider the following function:

The Tanh function:

KTanh(z̃) = kCT CTanh(z̃) = kCT Tanh(z̃1)

= kCT Tanh(x̃1) = kCT C̄Tanh(x̃)

(20)

whereTanh denotes the hyperbolic tangent function
andk > 0 is a real number.

Similarly to the hyperbolic tangent function, one can
easily check that the inverse tangent function, the

inverse sinus function, etc., also constitute valid ex-
pressions forK(z̃). Besides, one can consider new
valid expressions forK(z̃) by addingKTanh(z̃) to
KHG(z̃). This gives rise to a sliding mode observer
similar to that used in (Filipescuet al., 2003).

5. EXAMPLE

Consider the following dynamical system:





ẋ1 = (a− x1)x3 + u1

ẋ2 = x1x3 − x2 + u2

ẋ3 = −k1x
3
3 + x4(1 + k2x

2
4)

ẋ4 = ε(t)
y = (x1 x2)T

(21)

wherex = (x1 x2 x3 x4)T ∈ IR4, a > 0, k > 0
are constant real parameters,u = (u1 u2)T ∈ IR2 and
y = (x1 x2)T respectively denote the measured inputs
and outputs, andε stands for any unknown bounded
function. It is easy to see that system (21) is under
form (1) with q = 3 andx1 = (x1 x2)T , x2 = x3,
x3 = x4.
System (21) is similar to that considered in (Farzaet
al., 2004) and the authors constructed a setΩ which is
positively invariant under the dynamics of (21). Using
this fact, one can easily check Assumptions (A1) to
(A4) and observers under form (17) can then be used
to estimate the trajectories of system (21). One shall
give in what follows two sets of results provided by
a high gain observer (obtained by using expression
(18) in (17) and and by a sliding mode like observer
(obtained by using expression (20) in (17)).
In order to simulate practical situations and before
being used by the observers, each of the measure-
ments ofx1 andx2 has been corrupted by a uniformly
distributed random signal produced by SIMULINK
with zero mean value and a standard deviation to
0.33. The true time evolutions ofx3 andx4 (issued
from model simulation) with their respective estimates
provided by the high gain observer are compared in
figure 1. Figure 2 shows the same results obtained
with the sliding mode like observer. For simulation
purposes, the time evolution ofx4 has been specified
as a trapezoidal signal varying between100 and40,
u1(t) = 100 cos(πt), u2(t) = 100 sin(πt), a = 5,
k1 = 0.02 andk2 = 10−4. The employed value ofθ
was 50 in both observer and the value of the parameter
k was equal to1 in the sliding mode observer. The
initial conditions for the model and the observer are:
x1(0) = x̂1(0) = 0; x2(0) = x̂2(0) = 0; x3(0) = 5;
x̂3(0) = 1; x̂4(0) = 0. Figures 1 and 2 show the
good agreement between the estimated and simulated
variables. Recall that the time evolution of the statex4

considered for simulation purposes is ignored by the
observers.
The obtained results clearly show similar behaviours

of both observers. In fact, many other numerical simu-
lations have been carried out and they do confirm such
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Fig. 1. Estimation results with high gain observer

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

X
3
 

SIMULATED 

ESTIMATED 

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

X
4
 

SIMULATED 
ESTIMATED 

Fig. 2. Estimation results with sliding mode observer

a fact.

Conclusion: A set of observers has been designed
for a class of nonlinear systems. The appealing fea-
tures of the proposed observers are the easiness of
their implementation and their ability to give rise to
different observers having different structures. It has
been shown that high gain observers and sliding mode
like observers can be derived from the set of proposed
observers.
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