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Abstract. This paper discusses the implementation of an LQ control strategy through the
use of a Minimal Control Synthesis adaptive algorithm recently presented in the literature.
It is shown that by using such approach the structural stability of the closed-loop system
can be improved with respect both parameter mismatches and nonlinear perturbations. A
case study discussed in the literature on LQ controllers is used to illustrate the strategy
presented in the paper. Copyright c©2005 IFAC
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1. INTRODUCTION

Often, in applications it is required for the controller to
minimize certain cost criteria while control is attained.
It is now common practice in applications to address
this requirement by using classical Optimal Control
techniques such as the well-known Linear Quadratic
Regulators (LQR) (Anderson and Moore, 1971). It
has been shown that, typically, LQ schemes lack the
flexibility and the structural stability of other more
sophisticated control approaches as, for instance, ex-
emplified by the two significative cases discussed in
(Soroka and Shaked, 1984) and (Zang and Fu, 1996).
The lack of robustness to model uncertainties and non-
linear perturbation is, at times, a strong limitation for
the use of LQ strategies. In facts, many problems of
relevance in applications contain uncertainties, model
inaccuracies and other effects that can make the use of
classical optimal control schemes unviable.
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One way of achieving greater control flexibility is to
use adaptive control schemes where the control gains
can be appropriately varied according to the system
behavior. Recently, a novel model-reference adaptive
algorithm has been presented which relies on mini-
mal knowledge of the plant (Stoten and Benchoubane,
1990a). The scheme, which has been termed as Mini-
mal Control Synthesis Algorithm (or MCS), has been
shown to be robust to nonlinear terms and slowly vary-
ing parameter variations (Stoten and Benchoubane,
1990b).

From an application viewpoint, it would be desir-
able to merge the optimal approach with an adaptive
scheme in order to guarantee optimality of the control
action while maintaining some of the benefits of an
adaptive strategy. Most of the schemes attempting the
integration of adaptive and optimal control approaches
presented in the literature sofar require intense compu-
tations, good knowledge of the plant and the absence
of any nonlinear perturbation on the plant model (see
for example (Rusnak and Guez, 1995), (El-Farra and



Figure 1. The MCS adaptive control scheme

Christofides, 1999)). Thus, despite their potential ben-
efits, such controllers are hardly used in applications
as they are too costly to design and implement.

The aim of this paper is to propose a simple implemen-
tation of an optimal LQ controller based on the use of a
minimal control synthesis adaptive algorithm. We will
show that in so doing it is possible to implement the
LQ strategy on the plant even in those cases where the
LQ strategy by itself has been shown to lack structural
stability. The choice of the MCS controller allows the
control objective to be achieved with minimal knowl-
edge of the plant and with little design effort as the
adaptive gains are started from zero initial conditions.

We will present two alternative MCS based optimal-
adaptive schemes. The effectiveness of the proposed
strategies is validated on the example discussed in
(Soroka and Shaked, 1984) to illustrate the lack of
robustness of classical LQ controllers. We will show
that the LQ-MCS implementation introduced in this
paper is indeed effective in maintaining stability and
achieve acceptable sub-optimal solutions even when a
solely LQ action would fail. Moreover a proof of the
asymptotic stability of the resulting closed-loop plant
is provided in section 3.1.

2. MCS ALGORITHM: A BRIEF OVERVIEW

The MCS algorithm was first introduced in (Stoten
and Benchoubane, 1990a) as an extension of the Lan-
dau Model Reference Adaptive scheme. The MCS
strategy relies on minimal knowledge of the plant
dynamics. Namely, it is assumed that the controlled
system (plant) is controllable and observable and it
has unknown parameters but a known phase canonical
structure

ẋ(t) = Ax(t)+Bu(t), (1)

The main aim of MCS control is for the plant states,
x(t), to track asymptotically the states, xm(t), of a
given reference model of the form (Stoten and Ben-
choubane, 1990a)

ẋm(t) = Amxm(t)+Bmr(t) (2)

with r(t) being some desired reference signal.

As shown in Fig. 1, the MCS control input, say
uMCS(t), consists of a feed-forward and a feedback
action with time-varying adaptive gains defined as

uMCS(t) = K(t)x(t)+KR(t)r(t), (3)

with

K(t) = α
∫ t

0
ye(τ)xT (τ)dτ+βye(t)x

T (t) (4a)

K(0) = K0 ,K ∈ R
n (4b)

KR(t) = α
∫ t

0
ye(τ)r(τ)dτ+βye(t)r(t) (4c)

KR(0) = KR0 ,KR ∈ R (4d)

and α and β being positive scalar adaptation weights;
ye is the output error computed as

ye(t) = Cexe(t), (5)

where

xe(t) = xm(t)− x(t), (6a)

Ce =
[

0 . . . 0 1
]

P , (6b)

and P is the solution of the Lyapunov equation

PAm +AT
mP = −M, M > 0. (7)

Note that typically the adaptive gains are started from
zero, i.e. K0 = 0 and KR0 = 0.

As shown in (Stoten and Benchoubane, 1990a), the
MCS controller can be proven to guarantee asymptotic
stability of the error system, with the plant states track-
ing asymptotically the states of the reference model.
Moreover, the MCS algorithm was also shown to be
robust again rapidly varying disturbances and (un-
modelled) nonlinear perturbations of the form f (x) =
[0 · · ·0 d(x, t)]T with d(x, t) acting on the plant dy-
namics (Stoten and di Bernardo, 1996).

3. AN LQ-MCS IMPLEMENTATION

In order, to address the robustness properties of classi-
cal control schemes while maintaining the simplicity
of use of the MCS algorithm and its benefit, we shall
seek now to integrate a classical LQ optimal control
approach with the MCS algorithm.

The main idea is to use the MCS to concretely pro-
vide to the real plant the control input generated by
a classical LQ optimal controller acting on a nominal
model of the plant. In so doing any mismatch between
the nominal model and the real plant will be compen-
sated by the adaptive action of the MCS, which will
also guarantee stability in those cases where the LQ
strategy alone would fail.

We propose to implement the MCS scheme on the
real plant selecting as a reference model, the nomi-
nal model of the plant controlled via a classical LQ
optimal strategy, i.e. choosing um(t) in figure 1 as an
optimal control input.

The steps required to build up this scheme can be
summarized as follows.



Figure 2. Optimal Reference Minimal Control Synthe-
sis (scheme (a)).

(1) Identify a nominal linear model of the plant of
interest of the form:

ẋ0(t) = A0x0(t)+B0u0(t) (8)

Note that thanks to the robustness properties of
the MCS, we do not need to take explicitly into
account nonlinear terms acting on the plant or
parameter uncertainties. The model above rep-
resents a rough estimate of the plant matrices
that can be used to synthesize a classical optimal
control law.

(2) Synthesize a classical LQ optimal controller on
the nominal plant model. Note that the optimal
controlled nominal plant (8) can be also rewritten
as

ẋ0(t) = (A0 +B0Kopt)x0(t)+B0r(t), (9)

with optimal control gains Kopt or equivalently

ẋ0(t) = Amx0(t)+Bmr(t). (10)

(3) Implement the LQ-MCS scheme by using the
closed-loop LQ nominal plant as the reference
model for the MCS adaptive controller acting on
the real plant given by:

ẋ(t) = (A0 +∆A)x(t)+(B0 +∆B)u(t) =

= Ax(t)+Bu(t) (11)

where the matrices ∆A,∆B model parameter un-
certainties on the real plant dynamics.

Figure 2 describes the LQ-MCS scheme.

3.1 Proof of asymptotic stability

In order to put our new generalization in context, a
proof of asymptotic stability of the LQ-MCS algo-
rithm is given in this section. The main idea behind
the proof is that of writing the model following error
dynamics as a feedback system with a strictly positive
real (SPR) forward path and a nonlinear feedback path
which satisfies the Popov Criterion as given by (14).

We first write the error equation from (10), (11), (3) as

ẋe = (ẋ0 − ẋ) = Amxe(t)+ [Am −A−BK(t)]x(t)+

+[Bm −BKR(t)]r(t) (12)

then, after some algebraic manipulation (given the
canonical structure of A and Am), we get

ẋe = Amxe +BeΦ(t)w(t) (13)

where Φ(t) =
[

Φx ΦR
]

; Φx(t) =
[

Φ1 · · · Φn
]

=
[Am −A−BK(t)]n,; ΦR(t) = [Bm −BKR(t)]n; w(t) =
[

x1 · · · xn(t) r(t)
]T

.

Therefore the error system represented in (13) can
be rewritten as a nonlinear feedback system. We now
wish to demonstrate that this closed loop system will
be globally asymptotically stable and that the error
xe(t) will tend to zero with time. This proof is achieved
in two steps which may be described heuristically as
follows:

(1) Show that the forward path, the linear system
formed by the triple Am,Be,Ce is passive, i.e. a
system that never creates energy. This condition
is also referred to as the system transfer function
H(s) = C−1

e (sI − Am)Be being strictly positive
real (SPR). For a given transfer function to be
SPR, it must satisfy the following conditions:
(a) H(s) must be strictly stable; (b) the real
part of H(s) must be strictly positive along the
imaginary axis, i.e. ∀ω ≥ 0, Re{h( jω)} > 0.

(2) Prove that the feedback block will only ever
produce a finite amount of energy. This can be
shown using the Popov’s Criterion.

So, if these two conditions are satisfied then any
energy produced by the adaptive feedback block will
be eventually dissipated by the forward path and as a
consequence the global error output will tend to zero
as time goes to infinity.

The first condition can be verified by the Kalman-
Yakubovitch Lemma, as reported in (Stoten and Ben-
choubane, 1990a).

For the second condition to be satisfied, the feedback
block must verify the integral inequality

I =

∫ t2

t1

ye(t) [−Φ(t)w(t)]dt ≥−c2 (14)

for all t2 ≥ t1, where c ∈ IR is a constant independent
of t2.

From equations (4), we can write each gain term
as the sum of an integral (cf. α) and a proportional
contribution (cf. β):

Ki(t) = Kiα(t) = Kiα(t)+Kiβ(t), i = 1,2, · · · ,N

and similarly

Φi(t) = Φiα(t) = Φiα(t)+Φiβ(t), i = 1,2, · · · ,N

Notice that if we assume that the variation of the
system parameters is significantly slower than the
adaptation evolution, we can deduce that:

Φ̇iα(t) ≈−bαye(t)wi(t) =
α
β

Φiβ (15)



By decomposing the integral term I in (14) as
∫ t2

t1

ye(t) [−Φ(t)w(t)]dt =
∑

i

Iiα +
∑

Iiβ

then (14) is satisfied if each of the component integrals
Iiα =

∫ t2
t1

ye(t) [−Φiα(t)wi(t)]dt and

Iiβ =
∫ t2

t1
ye(t)

[

−Φiβ(t)wi(t)
]

dt satisfies the Popov
inequality.

By adopting an equality in (15) we can then write

Iiα =
1

bα

∫ t2

t1

[

Φiα(t)Φ̇iα
]

dt =

=
1

2bα
[

Φ2
iα(t)

]t2
t1
≥ 1

2bα
Φ2

iα(t1) = −c2
iα.

with ciα ∈ IR.
Moreover

Iiβ =

∫ t2

t1

Φ2
iβ(t)dt ≥ 0

Hence the second condition is proven.

This, together with the fact that the triple Am,Be,Ce is
SPR guarantees the asymptotic stability of the closed-
loop plant.

We remark that the stability analysis of the closed-
loop system has been investigated in absence of non-
linear perturbations such as unmodelled nonlinear dy-
namics. Robustness with respect to unknown nonlin-
ear dynamics acting on the real plant (11) as

ẋ(t) = Ax(t)+Bu(t)+ f (x) (16)

is guaranteed by the MCS algorithm (see (Stoten and
Benchoubane, 1990b) for the proof).

4. AN ALTERNATIVE IMPLEMENTATION OF
THE LQ-MCS APPROACH

In this section we suggest a possible alternative im-
plementations of our LQ-MCS strategy (see figure 3).
Mainly the difference between this schemes and the
one proposed in section 3 is in the computation of the
control input to the plant.

In particular, in the first scheme (scheme (a), figure 2)
the control input to the real plant is entirely provided
by the MCS controller, i.e. it is selected as in (3). In
this second scheme (scheme (b), figure 3), instead,
this is complemented with a further contribution from
the optimal LQ input to the nominal model of the
plant, i.e. uMCS(t)+uOPT (t). While in the former case,
the MCS provides the entire control effort, in the
second scheme the role of the MCS action is to adjust
the optimal LQ control low by means of adaptive
perturbations.

In this paper the effectiveness of this second control
implementation is investigated through simulations.
Results and a numerical comparison between the two
schemes can be found in section 5.

Figure 3. Minimal Control Synthesis with Optimal
Feed-Forward action (scheme (b)).

5. A REPRESENTATIVE EXAMPLE

As mentioned above classical LQ controllers are typ-
ically effective only if the plant parameters are per-
fectly known in the absence of nonlinear perturba-
tions. It has been shown that the presence of parameter
mismatches in the plant can even cause a complete
loss of stability under LQ control. A particularly strik-
ing case was discussed in (Soroka and Shaked, 1984)
(see (Zang and Fu, 1996) and references therein for
other examples). In those cases where stability is still
preserved, often poor control performances are ob-
served in terms of higher values of the cost function
(see for example (Xue et al., 1999)).
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Figure 4. Closed-loop LQ nominal plant: time history
of the state variables. Solid line: xm1(t). Dash-dot
line: xm2(t).
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Figure 5. Closed-loop LQ nominal plant: time history
of the cost function.

To validate the proposed LQ-MCS approach, we will
discuss in this section its application to the representa-
tive case described in (Soroka and Shaked, 1984). As
mentioned in (Soroka and Shaked, 1984), despite of its
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Figure 6. Closed-loop LQ real plant in presence of a
mismatch in the model parameters: time history
of the state variables. Solid line: xm(1)(t). Dash-
dot line: xm(2)(t).
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Figure 7. Closed-loop LQ real plant in presence of a
mismatch in the model parameters: time history
of the cost function.

impressive margins, full state linear quadratic optimal
regulator may suffer from robustness problems where
small changes in the parameters of the system may
lead to fast unstable closed-loop behaviour. Note that,
as remarked in (Soroka and Shaked, 1984), the lack
of robustness is also observed for small parameter
variations in the normalized input matrix and does not
depend on the diagonality of the control weighting
matrix.

Namely, we consider the synthesis of an LQ state
feedback optimal regulator for the single input sin-
gle output linear time-invariant nominal model of the
plant of the form (10), where

Am =

(

−1 0
0 −2

)

, Bm =

(

1
2

)

, Cm =
(

1 1
)

(17)
We assume that the controller should be found that
minimizes the performance index, J, defined as

J =

∫ ∞

0

[

y2
m(t)+ ru2(t)

]

dt, r > 0 (18)

As shown in (Soroka and Shaked, 1984), the op-
timal control gains can be found to be given by
K = (k1 k2), where k1 = 1 + q−√

5+2q and k2 =
2
√

5+2q−q−4 with q =
√

4+1/r.

The stability region reported in (Soroka and Shaked,
1984), shows that small variations in the system pa-
rameters can cause the optimal controller to induce
unstable dynamics on the closed-loop system. We con-
sider for example the case when r = 0.01. With this
choice of r, the optimal gains for the nominal plant
(8) are K = (6.16,4.12). In Figs. 4–7, we see that
the optimal controller successfully achieve the output
regulation to zero, guaranteeing minimality of the per-
formance index (with an asymptotic value J∞ ≈ 900 as
depicted in Fig 5).

Now assume that the same optimal controller is imple-
mented on the real plant which we assume is described
by (11) with

∆A =

(

0 0
0 0

)

, ∆B =

(

−0.02
1

)

.

As shown in Fig 6, 7, the LQ control action is now
destabilizing, thus, as expected, small parameter vari-
ations can cause unexpected losses of structural stabil-
ity.

We propose to overcome this problem, by making
use of the LQ-MCS implementations proposed in this
paper (see scheme (b) in figure 3). Figures 8, 9 show
the time evolution of the states of the real plant and
those of the optimal plant under the effects of the LQ-
MCS strategy. We see that the integration of the LQ
controller with an additional MCS adaptive strategy
guarantees stability even in the presence of parameter
variations. Moreover, the performance index (see Fig-
ure 10) stay close to the original value guaranteed by
the LQ controller acting on the nominal plant (in Fig.
5).

0 20 40 60 80 100 120
−4

−3

−2

−1

0

1

2

3

time [s]

xm
1(

t)
, x

1(
t)

xm1
x1

Figure 8. Closed-loop LQ-MCS plant (see scheme (b)
in figure 3). Time history of the first state vari-
ables of the real plant and the reference model,
respectively x1(t), xm1(t).

Similar performances can be achieved by using the
control scheme (a) described in Figure 2. The control
input in this case is rapidly varying since it is com-
pletely provided by the adaptive action This obviously
reflects in the state space behavior as can be seen in
Figures 11 and 12.
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Figure 9. Closed-loop LQ-MCS plant (see scheme (b)
in figure 3): time history of the second state vari-
ables of the real plant and the reference model,
respectively x2(t), xm2(t).
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Figure 10. Closed-loop LQ-MCS plant (see scheme
(b) in figure 3): time history of the cost function.
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Figure 11. Closed-loop LQ-MCS plant (see scheme
(a) in figure 2.): time history of the first state vari-
ables of the real plant and the reference model,
respectively x1(t), xm1(t).

6. CONCLUSIONS

In this paper we have shown that it is indeed pos-
sible to improve the structural stability of classical
LQ controllers by integrating them within a novel
adaptive control scheme, namely the Minimal Control
Synthesis algorithm. Stability of the closed-loop plant
has been proofed. By using a representative example
presented in the literature to exemplify the lack of
robustness of classical LQ controllers, we have also
shown the effectiveness of the proposed LQ-MCS im-
plementation. We wish to emphasize that, even if more
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Figure 12. Closed-loop LQ-MCS plant (see scheme
(a) in figure 2.): time history of the second
state variables of the real plant and the reference
model, respectively x2(t), xm2(t).

sophisticated solutions can be found, the proposed ap-
proach relying on the MCS is simple to design and
easy to implement for practical applications.

Ongoing research is focussed towards the formulation
of an extended MCS control law including an explicit
extra adaptive term to guarantee minimization of an
appropriate performance index.
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