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1. INTRODUCTION

The reliability demands of modern industrial systems
require the development of reliable fault diagnosis ap-
proaches. During the last few decades many investiga-
tions have been made using active approaches, based
on residual generation requiring the analytical mod-
els (Chen and Patton, 1999; Korbicz et al., 2004; Pat-
ton and Korbicz, 1999). Such models can be diffi-
cult to obtain for the contemporary complex industrial
systems. Furthermore, in the case of the model-based
fault diagnosis, the model uncertainty is the elemen-
tary factor influencing on the reliability and perfor-
mance in diagnosing faults. Model uncertainty, as well
as disturbances are inevitable in industrial systems,
and hence there exists a significant pressure, creating
the challenge of robustness in fault diagnosis systems.
This paper focuses on the problem of designing Group
Method of Data Handling Neural Networks (Mueller
and Lemke, 2000) as well as describing their uncer-
tainty (Mrugalski, 2004; Witczak et al., 2005). Know-
ing the model structure and possessing the knowledge
regarding its uncertainty it is possible to design a ro-
bust fault detection scheme.

The paper is organized as follows. Section 2 presents
the synthesis of the GMDHNN. Section 3 describes
selection methods, which can be apply during syn-
thesis. In particular, a method based on the soft se-
lection is presented. Section 4 present sources of
GMDHNN uncertainty, whilst section 5 deal with the
problem of parameter estimation and outlines some
information regarding the so-called bounded-error ap-
proach (BEA) for parameter estimation (Milanese et
al., 1996). The final part of this work contains an
illustrative example, which confirms the effectiveness
of the proposed approach.

2. SYNTHESIS OF THE GMDHNN

The concept of the synthesis of the GMDHNN is
based on the iterative processing of a defined sequence
of operations leading to the evolution of the resulting
structure with the application of the appropriate selec-
tion methods (as illustrated in Fig. 1), which gener-
ates the best approximation of the real system output.
The process is completed when the optimal degree of
network complexity is achieved. It is assumed that at
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ỹ
(L)
1

ỹ
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Fig. 1. Synthesis of the GMDH neural network

least two input signals u
(l)
1 (k), ..., u

(l)
nu(k) constitute

the stimulation which results in the formation of the
neuron output signal ỹ

(l)
n (k):

ỹ(l)
n (k) = f(u) = f(u

(l)
1 (k), . . . , u(l)

nu
(k)), (1)

where ỹ
(l)
n (k) stands for the neuron output (l is the

layer number, n is the neuron number in the l-th layer),
corresponding to the k-th measurement of the input
u(k) ∈ Rnu of the system. Each neuron in the GMDH
network constitutes an elementary model. The para-
meters of each neuron are estimated separately in such
a way that their output signals are the best approxi-
mation of the real system output. In this situation, the
elementary model should have an ability to represent
the dynamics. One way out of this problem is to use
dynamic neurons (Mrugalski et al., 2003). Dynamics
in this neuron is realized by introduction of a linear
dynamic system - an Infinite Impulse Response (IIR)
filter. In this way, each neuron in the network repro-
duces the output signal based on the past values of
its inputs and outputs. Such a neuron model (Fig. 2)
consists of two submodules: the filter module and the
activation module.
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Fig. 2. A dynamic neuron model

The behaviour of the filter module is described by the
following equation:

y
′(l)
n (k) =− a1y

′(l)
n (k − 1) − . . .− anay

′(l)
n (k − na)

+ v
T
0 u

(l)
n (k) + v

T
1 u

(l)
n (k − 1)+, . . . ,

+ v
T
nb

u
(l)
n (k − nb),

(2)

or, equivalently,

y′(l)n (k) =
(

r
(l)
n (k)

)T

p
(l)
n . (3)

where [−y′
(l)
n (k−1), . . . ,−y′

(l)
n (k−na), u

(l)
n (k), u

(l)
n

(k−1), . . . , u
(l)
n (k−nb)] and p̂

(l)
n = [a1, . . . , ana

, v0,

v1, . . . , vnb
] are the regressor and the filter parame-

ters, respectively. The filter output is used as the input
for the activation module

ỹ(l)
n (k) = ξ(y′(l)n (k)). (4)

The feature of the above algorithm is that the tech-
niques for the parameter estimation of linear-in-
parameter models can be used. Indeed, since ξ(·) is
invertible, the neuron described by (2)-(4) can rela-
tively easily be transformed into a linear-in-parameter
one. The number of neurons ỹ

(l)
n1y in the first layer of

the network depends on the number of external inputs
nu. In a general case, a network of nu inputs is built
from neurons that have np inputs (nu > np). In this

case, n
(l)
y new elements are formed:

n(l)
y =

(

n(l−1)
y

np

)

=
n

(l−1)
y !

np!(n
(l−1)
y − np)!

. (5)

The definition of the evaluation criterion Q(ŷ
(l)
n ) of

the neurons is a preliminary task in designing a
GMDH approach (Mueller and Lemke, 2000). It al-
lows any neuron to define the quantity of a processing
error. Moreover, based on the defined evaluation crite-
rion it is possible to make the selection of neurons in
the layer. The selection of best performing neurons in
terms their processing accuracy is realized before the
formed layer is added to the network. The parameters
of the neurons in the newly created layer are “frozen”
during the further network synthesis. The outputs of
the selected neurons become the inputs to other neu-
rons in the next layer:



















u
(l+1)
1 = ỹ

(l)
1 ,

u
(l+1)
2 = ỹ

(l)
2 ,

. . .

u(l+1)
nu

= ỹ(l)
ny

.

(6)

In analogous way, the new neurons in the next layers
of the network are created. During the synthesis of the
GMDHNN, the number of layers suitably increases.
Each time when a new layer is added, new neurons
are introduced. The synthesis of the GMDHNN is
completed when the network fits the data with desired
accuracy or the introduction of new neurons did not
induce a significant increase in the approximation
abilities of the neural network. In order to achieve
this goal it is necessary to calculate the quality index
Q(ŷ

(l)
n ) for all ny neurons included in the l layer.

The Q
(l)
min represents the processing error for the best

neuron in this layer

Q
(l)
min = min

n=1,...,ny

Q(ŷ(l)
n ). (7)

The values Q(ŷ
(l)
n ) can be determined with the ap-

plication of the defined evaluation criterion used in
the selection process. The values Q

(l)
min are calculated

for each layer in the network. The synthesis of the
GMDHNN is completed when the following condition
occurs:

Q
(L)
opt = min

l=1,...,L
Q

(l)
min. (8)



The Q
(L)
opt represents the processing error for the best

neuron in the network, which generate the model out-
put signal. In other words, when additional layers do
not improve the performance of the network, the syn-
thesis process is stopped. To obtain the final structure
of the network, all unnecessary neurons are removed,
leaving only those which are relevant to the computa-
tion of the model output. The procedure of removing
unnecessary neurons is the last stage of the synthesis
of the GMDHNN.

3. SELECTION METHODS IN THE GMDHNN

The selection methods in the GMDHNN plays a role
of a mechanism of the structural optimization at the
stage of construing a new layer of neurons. Only
well performing neurons, which outputs are the best
approximation of the system output signal, are pre-
served to build a new layer. The output of the neuron
may becomes an input to other neurons in the next
layer or an output of the model. During the selec-
tion, neurons which have too large defined quality
index Q(ỹ

(l)
n ) are rejected based on chosen selection

methods. There exist a few methods of performing
the selection procedure. One of the most often ap-
plied is a constant population method (Mueller and
Lemke, 2000), which is based on selection of g neu-
rons, for which an evaluation criterion Q(ỹ

(l)
n ) reaches

the least values. The constant g is chosen on empirical
way. The most important advantage of this method
is the simplicity of implementation. Unfortunately,
constant population method has very restrictive struc-
ture evolution possibilities. The similar situation is in
the case of application of the decreasing population
method. This method defines the maximum number
of elements in layer. The number of the neurons in
each layer decreases along with the growth of the
network. One way out of this problem is an application
of the optimal population method. This approach is
based on rejecting the neurons for which the defined
quality index is larger than an arbitrarily determined
threshold eh. Usually, threshold is determined sepa-
rately for each layer and depends on the quality index
for a current layer. The threshold is selected in an
empirical way and is dependent of the considered task.
Difficulty with the selection of the threshold cause
that the optimal population method is not applied too
often. One of ways of performing the selection pro-
cedure is an application of the method based on the
soft selection approach. Thanks to a proper choice
of the quantity signals to the selection procedure, the
method achieve property of the soft selection. The
soft selection method (Mrugalski, 2004) is divided
into three parts as shown in Table 1. The property
of the soft selection follows from the specific series
of competitions. It may happen, that the potentially
unfitted neuron will be selected. Everything depends
on its score in the series of competition.

Table 1. The soft selection method
Input : The set of all ny neurons in the l-th layer,
nj - the number of a opponent neurons, nw - the
number of winnings required for the n-th neuron
selection.
Output : The set of neurons after selection.

(1) Calculate the evaluation criterion Q(ŷ
(l)
n ) for

n = 1, . . . , ny neurons
(2) Conduct series of ny competitions between

each n-th neuron in the layer and a nj ran-
domly selected neurons (the so-called oppo-
nent) from the same layer. The n-th neuron is
so-called winner neuron when:

Q(ŷ(l)
n ) ≤ Q(ŷ

(l)
j ), j = 1, . . . , nj

where ŷ
(l)
j denotes a signal generated by the

opponent neuron
(3) Selection of the neurons for the l + 1-th layer

with the number of winnings bigger then nw

(the remaining neurons are removed)

In this way, distinct from other selection methods, it is
possible to use potentially unfitted neurons which in
the next layers may improve the quality of the model.
Moreover, if the neural network is not fitted perfectly
to the identification data set, it is possible to achieve a
network which possess better generalization abilities.
One of the most important parameters which should
be chosen in the selection proces is the number of
the opponents nj . The bigger value of nj makes that
the probability of the selection of a neuron with little
quality index is low. In this way, in extreme situa-
tion when nj � ny the soft selection method will
behave like the constant population method which is
based on the selection only of the best fitted neurons.
Some experimental results performed on a number of
selected examples indicate that soft selection method
makes it possible to obtain a more flexible network
structure. Another advantage, comparing to the opti-
mal population method, is that we avoid an arbitrary
selection of the threshold. Instead of this we have to
select a number of winnings nw. This is, of course, a
less sophisticated task.

4. UNCERTAINTY OF THE GMDH MODEL

In order to perform the model construction procedure
it is necessary to define the quality index. Mueller and
Lemke (2000) present a comprehensive table of the
most common quality indexes used in the parametric
GMDH algorithm. The most often applied are Akaike
Information Criterion (AIC) and Final Prediction Er-
ror (FPE). These criterions are based on the statistic
taking into consideration the complexity of elemen-
tary models. The optimal structure of the elementary
model is obtained when the statistic has the minimal
value. In the case of AIC criterion statistic has the
following general form:

WnD = nD log JnD(Narch) + γ(nD, np), (9)



where JnD(Narch) represent the goal function for
the model architecture Narch and γ(nD, np) is the
function of the number of the data samples nD and
the number of elementary model parameters np. The
appropriate selection of the (9) ensure its increasing
along with increasing of the number of parameters
and converge to zero along with increasing of the
data samples set. The selection of the function char-
acterized by the above mentioned properties ensure
an elimination of the over-parameterized elementary
models. In the case of the AIC criterion the factor
γ(nD, np) is equal 2np what lead to the following final
form of the criterion:

WnD = nD log JnD (Narch) + 2np. (10)

In the case of the FPE criterion the statistic reflect an
expected variance of prediction error during predic-
tion new observations based on the model obtained for
the identification data set.

WnD = E(s2
τ (τ, Narch)), (11)

where τ denote the prediction period. In (Soderstrom
and Stoica, 1989) was shown, that the statistic (11) can
be approximate by the following expression:

WnD ≈ Λ(1 + np/nD), (12)

where an asymptotic unbiased estimate of the Λ is:

Λ̂ =
JnD (Narch)

(1− np/nD)
. (13)

As a result of substituting (13) into (12) the final form
of the FPE criterion is obtained:

WnD = JnD (Narch)
1 + np/nD
1− np/nD

. (14)

In the case of AIC criterion, it is possible to select bet-
ter elementary model based on the inequality defined
with the statistic (9):

nD log JnD (Narch,1) + γ(nD, np,1) ≤

nD log JnD (Narch,2) + γ(nD, np,2)
(15)

where after simple transformation has a form:

JnD (Narch,1) ≤ JnD(Narch,2)·

exp

[

(γ(nD, np,2)− γ(nD, np,1))

nD

]

(16)

and finally:

χ2
α(np,2 − np,1) = nD·

(

exp

[

(γ(nD, np,2)− γ(nD, np,1))

nD

]

− 1

)

.
(17)

Based on the (17) the AIC criterion can be perceived
as the F-test (Soderstrom and Stoica, 1989) with in
advance defined confidence level. The same disad-
vantage occurs in the case of the FPE criterion. In
(Soderstrom and Stoica, 1989) was theoretically and
practically proved, that for np,2 − np,1 = 1 de-
gree of freedom, the confidence level is 0.157. This
result means, that the probability of selection over-
parameterized structure Narch,2 via AIC or FPE cri-
terions is 15.7%. If the number of elementary models

in the GMDHNN is high then probability of selection
over-parameterized neurons is not acceptable. Another
reason opposite the application of the AIC and FPE
criterions is fact, that the probability of selection over-
parameterized elementary neurons is not decreasing
along with nD → ∞. Furthermore, the AIC and
FPE criterions were designed for comparison of the
hierarchical elementary models Narch,1 ⊂ Narch,2.
In the case of the GMDHNN this assumption is not
fulfilled (Fig. 3). Apart from the model structure selec-
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Fig. 3. The problem of unhierarchy of the neurons in
the first layer of the GMDHNN

tion stage, inaccuracy in parameter estimates also con-
tributes to modelling uncertainty (Mrugalski, 2004).

5. CONFIDENCE ESTIMATION OF GMDHNN

Let us consider the following system:

y(k) =
(

r
(l)
n (k)

)T

p
(l)
n + ε(l)

n (k). (18)

The problem is to obtain the parameter estimate vec-
tor p̂

(l)
n (k), as well as an associated parameter uncer-

tainty required to design robust fault detection system
(Mrugalski, 2004; Witczak et al., 2005). In order to
simplify the notation, the index (l)

n is omitted. The
knowledge regarding the set of admissible parameter
values allows obtaining the confidence region of the
model output which satisfies

ỹm(k) ≤ y(k) ≤ ỹM (k), (19)

where ym(k) and yM (k) are the minimum and max-
imum admissible values of the model output that are
consistent with the input-output measurements of the
system. In this paper, it is assumed that ε(k) consists
of a structural deterministic error caused by the model-
reality mismatch, and the stochastic error caused by
the measurement noise is bounded as follows

εm(k) ≤ ε(k) ≤ εM (k), (20)

where the bounds εm(k) and εM (k) (εm(k) 6=
εM (k)) can be estimated (Witczak et al., 2005). The
idea underlying the bounded-error approach is to ob-
tain a feasible parameter set (Milanese et al., 1996).
This set can be defined as

P = {p ∈ R
np |y(k)− εM (k) ≤ r

T (k)p ≤

y(k)− εm(k) , k = 1, . . . , nT },
(21)

where nT is the number of input-output measure-
ments. This set can be perceived as a region of pa-
rameter space that is determined by nT pairs of hy-
perplanes where each pair defines the parameter strip:

S(k) = {p ∈ R
np | y(k)− εM (k) ≤ r

T (k)p

≤ y(k)− εm(k)},
(22)



and hence

P =

nT
⋂

k

S(k). (23)

Let V be the set of all vertices p
i, i = 1, . . . , nv,

describing the feasible parameter set P. If there is no
error in the regressor, then the problem of determining
the model output uncertainty can be solved as follows:

r
T (k)pm(k) ≤ r

T (k)p ≤ r
T (k)pM (k), (24)

where
p

m(k) = arg min
p∈V

r
T (k)p, (25)

p
M (k) = argmax

p∈V

r
T (k)p. (26)

As is has already been mentioned, the neurons in the l-
th (l > 1) layer are fed with the outputs of the neurons
from the (l − 1)-th layer. In order to modify the
above presented approach for the uncertain regressor
case, let us denote an unknown “true” value of the
regressor rn(k) by a difference between a known
(measured) value of the regressor r(k) and the error
in the regressor e(k):

rn(k) = r(k)− e(k), (27)

where it is assumed that the error e(k) is bounded as:

em
i (k) ≤ ei(k) ≤ eM

i (k), i = 1, . . . , np. (28)

Using (18) and substituting (27) into (28) one can
define the space containing the parameter estimates:

εm(k)− e
T (k)p ≤ y(k)− r(k)T

p ≤

εM (k)− e
T (k)p.

(29)

Unfortunately, for the purpose of parameter estimation
it is not enough to introduce (27) into (28). Indeed, the
bounds of (29) depend also on the sign of each pi and
these signs are in general unknown. The best way out
of this problem, is to replace them by

pi = p′i − p′′i , p′i, p
′′
i ≥ 0, i = 1, . . . , np. (30)

Although the above solution is very simple, it doubles
the number of parameters, i.e. instead of estimating np

parameters it is necessary to do so for 2np parameters.
In spite of that, this technique is very popular and
widely used in the literature (Milanese et al., 1996).
Due to the above solution, (29) can be modified as
follows:

εm(k)−
(

eM (k)
)T

p
′ + (em(k))

T
p
′′

≤ y(k)− r
T (k)(p′ − p

′′) ≤ (31)

εM (k)− (em(k))
T

p
′ +

(

eM (k)
)T

p
′′.

The proposed modification of the BEA makes it pos-
sible to estimate the parameter vectors of the neurons
from the l-th, l > 1 layers. In the case of an error in the
regressor, using (31), it can be shown that the model
output uncertainty has the following form:

ỹm(k)(p′m(k), p′′m(k)) ≤ r
T
np ≤

ỹM (k)(p′M (k), p′′M (k)),
(32)

where

ỹm(k)
(

p
′m
(k), p

′′m
(k)

)

=
(

r(k)− eM (k)
)T

p
′m(k) + (em(k)− r(k))T

p
′′m(k),

(33)

ỹM (k)
(

p
′M
(k), p

′′M
(k)

)

= (r(k)− em(k))T

p
′M (k) +

(

eM (k)− r(k)
)T

p
′′M (k),

(34)

and
(

p
′m
(k), p

′′m
(k)

)

= arg min
(p′,p′′)∈V

ỹm(k)(p′, p′′(k)), (35)

(

p
′M
(k), p

′′M
(k)

)

= arg max
(p′,p′′)∈V

ỹM (k)(p′, p′′(k)). (36)

Using (32) it is possible to obtain the system output
uncertainty:

ỹm(k)
(

p
′m
(k), p

′′m
(k)

)

+ εm(k) ≤ y(k) ≤

ỹM (k)
(

p
′M
(k), p

′′M
(k)

)

+ εM (k).
(37)

In order to adapt of the presented approach to the para-
meter estimation of non-linear neurons, it is necessary
to transform the relation

εm(k) ≤ y′(k)− ξ
(

(r(k))T
p

)

≤ εM (k) (38)

using ξ−1(·), and hence

ξ−1
(

y(k)− εM (k)
)

≤ (r(k))
T

p ≤

ξ−1 (y(k)− εm(k)) .
(39)

As has been already pointed out, an error in the re-
gressor must be taken into account during the design
procedure of the neurons from the second and the
subsequent layers. Indeed, by using (24) in the first
layer and (32) in the subsequent ones, it is possible to
obtain the bounds of the output (3) and the bounds of
the regressor error (20). Note that the processing errors
of the neurons, which are described by the model out-
put uncertainty (32), can be propagated and accumu-
lated during the introduction of new layers. This un-
favourable phenomenon can be reduced by the appli-
cation of soft selection method. Unfortunately, as has
already been mentioned in section 4, the application
of the classical evaluation criteria during the network
synthesis may lead to the selection of an inappropriate
structure of the GMDHNN. This follows from the
fact that the above criteria do not take into account
the modelling uncertainty. In this way, neurons with
small values of classical quality indexes but with large
uncertainty can be obtained. In order to overcome this
difficulty, a new evaluation criterion of the neurons has
been introduced in this work, i.e.

QV=
1

nV

nV
∑

k=1

∣

∣(ỹM (k) + εM (k))− (ỹm(k) + εm(k))
∣

∣ (40)

where nV is the number of input-output measurements
for the validation data set, ỹM (k) and ỹm(k) are
calculated with (24) for the first layer or with (33)-
(34) for the subsequent ones. Finally, the neuron in
the last layer that gives the smallest processing error
(40) constitutes the output of the GMDHNN and the
system output uncertainty interval for this neuron can
be used for robust fault detection.



6. SIMULATION EXAMPLE

The purpose of the present section is to show the
application effectiveness of the proposed approach in
the designing FDI system. In particular, the data from
GARTEUR benchmark were employed to identify the
input-output model of the low-fidelity Boening 747-
100/200 aircraft model (Esteban and Balas, 2003).
The main difference between high- and low-fidelity
models is a reduction of the stability derivatives in
the aerodynamic coefficients. In order to obtain the
training data the aircraft was trimmed at an equilib-
rium point. The selected aircraft mass was 300,000
kg, and the position of the aircraft’s center of grav-
ity with to the (x, y, z)-axes was assumed to be 25
percent of the mean aerodynamic chord for the x-axis
and the point (0,0) meters for the other two axes. No
fault are assumed, and a flight condition defined to be
straight-level-flight at 7000 meters of altitude and at
a true airspeed of 241 m/sec was given. During flight
simulation the following pilot inputs were used: stab
– stabilizer, δw – wheel, δp – pedal and δc – column.
Table 2 gives the low fidelity longitudinal and lateral
aircraft states. The data used for the identification

Table 2. Aircraft states
qbody Pitch rate pbody Roll rate
V TAS True Air Spead rbody Yaw rate
α Angle of attack β Sideslip angle
θ Pitch angle φ Roll angle
he Altitude ψ Yaw angle
xe x-position ye y-position

set were appropriately filtered, moreover offset levels
were removed with the use of the MATLAB identifi-
cation toolbox. It should be also pointed out that these
data sets were appropriately scaled for the purpose
of neural networks designing. The selection of best
performing neurons for their processing accuracy is
realized with application of the soft selection method
based on the proposed evaluation criterion (40). For
the fault detection purpose fault scenario containing
wing damage due to engine separation was simulated.
The Fig. 4 present the real system response (yaw rate
state) as well as the corresponding system output un-
certainty obtained with the GMDH approach for this
scenario. An occurrence of fault is signalled by the
violation of the system output uncertainty interval by
the real system response. As can be seen the fault is
very easy to detect.
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Fig. 4. The real yaw rate state as well as the corre-
sponding system output uncertainty

7. CONCLUSIONS

The objective of this paper was concerned with obtain-
ing models and calculating their uncertainty directly
from the observed data. It was shown how to estimate
parameters and the corresponding uncertainty of an
individual elementary model and the whole GMDH
neural network. Based on the GMDH neural network,
a novel robust fault detection scheme was proposed
which supports the diagnostic decisions. The proposed
approach for system identification and fault detection
was tested on the GARTEUR benchmark problem.
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