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Abstract: This paper addresses the disturbance attenuation problem for multivari-
able linear systems with a delayed input. To solve this problem, we use a static feed-
back based on a state prediction, which allows us to analyze an equivalent linear
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system, and a numerical example illustrates our results.Copyright c©2005 IFAC

Keywords: Delay systems, disturbance attenuation, almost disturbance
decoupling, prediction, geometric approach, feedback.

1. INTRODUCTION

This work addresses the disturbance attenuation
problem in linear multivariable systems with in-
put delay. Time–delays appear frequently in in-
dustrial processes, economical, physiological and
biological systems (Niculescu, 2001), and their
presence is a consequence of delays in the pro-
cess itself, or is caused by controllers (transport,
communication, processing, . . .).
Disturbance attenuation is a topic of recurrent in-
terest. Among different methods well developed in
the literature for solving this problem, geometric
approach is an effective tool. Various versions of
this problem have been solved (Conte & Perdon,
1995), (Conte & Perdon, 2000), (Willems & Com-
mault, 1981), (Willems, 1981), (Wonham, 1985),
(Basile & Marro, 1992). The solutions consist in
necessary and sufficient conditions in terms of
certain subspaces associated to the considered sys-
tem. The computation of the subspaces effectively
permits to check the solvability and to construct
a solution controller.
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For time-delays systems, necessary and sufficient
conditions are also established for static or dy-
namic output feedback. The corresponding closed-
loop systems have in general an infinite number of
poles. Consider a linear multivariable system with
delayed input

ẋ(t) = Ax(t) + Bu(t− h) + Ew(t),

where h ∈ IR+ is the delay. The problem is to
make z = Gx, with G of appropriate dimension,
insensitive in closed–loop to the disturbance w
which is not available by measurement.
Following Smith, Olbrot and Manitius (Olbrot,
1978), (Manitius & Olbrot, 1979), if all the state
is measured, a prediction xp(t) of the state vector
x(t + h), is given by

xp(t) = eAhx(t) +

t∫

t−h

eA(t−τ)Bu(τ) dτ ,

which is available at time t. This prediction is
established without taking into account the dis-
turbance. It is also natural to use a static feedback
control law of the form

u(t) = Fxp(t) + v(t),



with F a real multivariable static gain and v a new
input. The motivation to using such control laws is
their simplicity and the induced properties of the
closed–loop system (Mondié & Loiseau, 2001).

In this paper, we are interested to solve problems
of disturbance attenuation by such a static state
feedback coupled with a prediction equation, for
linear input delay systems. We also address the
dual question of making the estimation of a time-
delay system insensitive to a perturbation. A de-
composition of the closed–loop transfer function
from w to z allows us to reduce this problem to
a disturbance decoupling problem without delay.
Geometric conditions are also given to solve them.
Different versions of the disturbance decoupling
problem by state feedback are considered, namely
the so-called exact and almost disturbance decou-
pling. Similarly, two cases are considered when us-
ing static output injection and observer-predictor
based structure to solve the question of estimat-
ing a system with input delays subject to distur-
bances.

The paper is organized as follows. In Section 2,
we formulate the problem under consideration.
Section 3 is devoted to the analysis of the closed–
loop transfer function. A time–decomposition of
impulse response in closed–loop is established in
Section 4. Necessary and sufficient geometric con-
ditions are given in Section 5, to solve problems
under interest. Finally, a numerical example is
provided in Section 6, to illustrate these geometric
conditions.

Notations. We denote by (̂·)(s) the Laplace
transform of (·). A denotes the Wiener algebra
(Callier & Desoer, 1978). Lp denotes the set of
the complex-valued measurable functions g(t) on
the nonnegative real axis such that ‖g‖p

Lp
=∫∞

0
|g(t)|p dt < ∞, for 1 ≤ p < ∞, and such

that ‖g‖L∞ = ess supt∈IR+
|g(t)| < ∞ in the case

p = ∞.

2. PROBLEM FORMULATION

Consider a linear input delay system




ẋ(t) = Ax(t) + Bu(t− h) + Ew(t)
y(t) = Cx(t)
z(t) = Gx(t)

, (1)

where x ∈ IRn is the state, u ∈ IRm is the control,
w ∈ IRd is an unknown disturbance, h ∈ IR+ is
the delay, y ∈ IRp is the measure, and z ∈ IRc is
the output to be controlled. Matrices A ∈ IRn×n,
B ∈ IRn×m, E ∈ IRn×d, C ∈ IRp×n and G ∈ IRc×n

have real entries. The disturbance w is not avail-
able by measurement.
We are interested in the synthesis of a control law
guarantying the attenuation of the disturbance

effect on the output. For this aim, we will dis-
tinguish two problems. The first one is the case
where all the state is measured, i.e. C = In. We
will use a static state feedback distributed control
law, of the form

u(t) = Fxp(t) + v(t), (2)

where F ∈ IRm×n, v is an eventually new input for
the closed–loop system, and xp(t) is a prediction
of x(t + h) given by

xp(t) = eAhx(t) +

t∫

t−h

e(t−τ)ABu(τ) dτ . (3)

This problem is reduced to make z insensitive in
closed–loop to the disturbance w.
The second one is the case of static output
injection, where we will use an injection with
an observer–predictor based structure (Mirkin,
2003), i.e.

ẋo(t) = Axo(t) + Bu(t− h)− i(t), (4)

with i(t) = L(y(t)−Cxo(t)), is an observer of (1),
and a state prediction based on this estimation is
given by

xop(t) = eAhxo(t) +

t∫

t−h

eA(t−τ)Bu(τ) dτ , (5)

where xo(t) is an estimate of x(t), xop(t) is a
prediction of x(t+h), and L ∈ IRn×p. The problem
is to make ep(t) = z(t) − Gxop(t − h) insensitive
in closed–loop to the disturbance.
We will suppose that the pair (A,B) of system (1)
is stabilizable, and the pair (C, A) is detectable
(Olbrot, 1978).

3. PRELIMINARY RESULTS

This section is devoted to characterize the input–
output evolution in closed–loop from the distur-
bance and the controlled output. We take also
v = 0 in (2).

Lemma 1. Consider the input delay system de-
scribed by (1).
(i) The closed-loop transfer matrix (1)-(2)-(3)
from the disturbance w(t) and the controlled out-
put z(t) is

Twz(s) = T1(s) + e−shT2(s), (6)

with
T1(s) = G(sI −A)−1(I − e−sheAh)E,

T2(s) = G(sI −A−BF )−1eAhE.

(ii) The closed-loop transfer matrix (1)-(4)-(5)
from w(t) to ep(t) = z(t)−Gxop(t− h) is

Twep(s) = T1(s) + e−shT3(s), (7)



where T1(s) is as above, and

T3(s) = GeAh(sI −A− LC)−1E.

Proof. (i) Denote

ϕ(t) =

t∫

t−h

eA(t−θ)Ew(θ) dθ,

the error of prediction xp(t − h) of x(t), so that
x(t) = ϕ(t) + xp(t − h). Furthermore, in closed–
loop, we have

ẋ(t) = Ax(t) + BFxp(t− h) + Ew(t)
= (A + BF )x(t) + Ew(t)−BFϕ(t).

By subtracting x(t)− ϕ(t), we obtain

ẋp(t) = (A + BF )xp(t) + eAhEw(t).

Whereas

ϕ̂(s) = (I − e−sheAh)(sI −A)−1Eŵ(s),

and z(t) = G(ϕ(t) + xp(t− h)), the result follows.

(ii) The dynamic of the estimate xo(t) is governed
by

ẋo(t) = (A + LC)xo(t) + Bu(t− h)− LCx(t).

The estimation error eo(t) = x(t)− xo(t) verifies

ėo(t) = (A + LC)eo(t) + Ew(t),

Then, the prediction error ep(t) = x(t)−xp(t−h)
is described by ep(t) = eAheo(t − h) + ϕ(t), and
the result directly follows. 2

This decomposition of the transfer function from
the disturbance and the controlled output is also
presented in (Mirkin, 2003), and it is shown that it
allows to characterize all stabilizing controllers of
the delayed system (1). The reader is also referred
to (Zhong, 2003), where the same idea is used.

4. TIME–DOMAIN ANALYSIS

The decomposition of the input–output transfer
function described in Section 3 has an easy in-
terpretation in the time domain. This section is
devoted to describe it.
Consider a generalized function f(t) ∈ A, of the
form

f(t) =





0 , t < 0

fa(t) +
∞∑

i=0

fiδ(t− ti) , t ≥ 0 , (8)

where fa ∈ L1, i.e. ‖fa‖L1 =
∫∞
0
|fa(t)|dt < ∞,

fi ∈ IR for i ∈ IN, 0 = t0 < t1 < · · ·, δ(t) stands
for the Dirac delta function, and

∑∞
i=0 |fi| < ∞.

A is closed under addition, multiplication, and
convolution, and is a commutative Banach alge-
bra, with unit δ(t), for the norm defined by

‖f‖A = ‖fa‖L1 +
∞∑

i=0

|fi|.

Similarly, the set Â of Laplace transforms of
elements of A is a commutative Banach algebra,
with unit 1, for the induced topology.
We consider the class of causal linear systems
described by a convolution

y(t) =

t∫

0

f(t− τ)u(τ) dτ
.= (f ∗ u)(t), (9)

or equivalently ŷ(s) = f̂(s)û(s), where the kernel
f and the input u are assumed Laplace trans-
formable, in the sense of distributions. One says
that (9) is BIBO stable if f ∈ A, or equivalently
if f̂ ∈ Â, i.e. ‖f‖A < ∞. The BIBO stability is
also equivalent to an input-output stability, i.e.
every bounded input u ∈ L∞ produces a bounded
output y ∈ L∞.

Consider the closed-loop transfer matrix Twz(s)
from w to z. The closed-loop system is described
by a convolution, as in (9). Then, denoting by h(t)
the impulse response of the closed-loop transfer
matrix Twz(s), we have Twz(s) = ĥ(s).
For 1 ≤ p ≤ ∞, the Lp–induced norm of the Lp–
norm of Twz(s), denoted by ‖Twz‖p, is defined by
(Desoer & Vidyasagar, 1975)

‖Twz‖p = sup
w∈Lp,w 6=0

‖h ∗ w‖Lp

‖w‖Lp

.

It is well known that the following equality holds
(Desoer & Vidyasagar, 1975), (Callier & Desoer,
1978)

‖Twz‖1 = ‖Twz‖∞ = ‖h‖A,

which is well defined if and only if the closed-loop
system is BIBO stable.
For all 1 < p < ∞, an upper bound of ‖Twz‖p is
also given by

‖Twz‖p ≤ ‖h‖A, 1 < p < ∞.

By the decomposition of the input–output trans-
fer function Twz(s) established in Lemma 1, we
have the following result.

Lemma 2. Let Twz(s) = ĥ(s) be the closed–loop
transfer matrix from w to z. Then,

h(t) = h1(t) + h2(t),

where h1(t) and h2(t) are generalized func-
tions with non overlapping supports, and are re-
spectively the impulse response of T1(s), with
bounded support [0, h], and the impulse response
of e−shT2(s) given in (6), with support contained
in [h,∞[. Moreover, if the matrix (A + BF ) is
stable, then ‖h‖A < ∞ and

‖h‖A = ‖h1‖A + ‖h2‖A. (10)

Proof. In (6), the transfer matrix T1(s) defined
by

G(sI −A)−1(I − e−sheAh)E,



admits a finite impulse response h1(t) given by

h1(t) =
{

GeAtE , t ∈ [0, h]
0 , t > h

, (11)

which lies in Lc×d
p , for all 1 ≤ p ≤ ∞. Then

h1 ∈ A. The impulse response h2(t) of e−shT2(s)
has a support on [h,∞[. If the matrix (A + BF )
is stable, by (6), it is clear that h2 ∈ A. Since h1

and h2 have non overlapping supports, the norm
decomposition (10) directly follows. 2

It is worth noting that h1 does not depend on
the control law applied to the system. One can
evaluate ‖h1‖A from the knowledge of A,E, G, by
integration of (11). This norm gives a lower bound
for the closed–loop transfer between the output z
and the disturbance w

‖Twz‖1 ≥ ‖h1‖A.

The same remarks can be made for the estimation
problem described in the claim (ii) of Lemma 1.
One obtains the following.

Lemma 3. The impulse responses h1(t) and h3(t)
of the transfer T1(s) and e−shT3(s) respectively
have non overlapping supports. Moreover, if (A +
LC) is stable, then ‖Twep‖1 < ∞ and

‖Twep‖1 = ‖h1‖A + ‖h3‖A. (12)

A lower bound of the closed–loop transfer between
the disturbance w and the predicted estimate ep

is thus obtained. One has

‖Twep‖1 ≥ ‖h1‖A.

In the following, we shall be interested in the case
where the lower bounds are reached, i.e.

inf
F
‖Twz‖1 = ‖h1‖A, (13)

and
inf
L
‖Twep‖1 = ‖h1‖A.

In this case, note that ‖h1‖A also provides an
upper bound of ‖Twz‖p or ‖Twep‖p for the other
values of p, and one has

inf
F
‖Twz‖p ≤ ‖h1‖A, 1 ≤ p ≤ ∞,

and

inf
L
‖Twep‖p ≤ ‖h1‖A, 1 ≤ p ≤ ∞.

5. INTERPRETATION IN GEOMETRIC
TERMS

In this section, necessary and sufficient geometric
conditions are given to solve various problems of
disturbance attenuation or disturbed estimation
for the time-delay system (1), taking into account
the stability of the closed-loop system or not.

For the case of linear systems without delays,
conditions to solve this problem are given in
the literature, the reader is referred to (Willems
& Commault, 1981), (Basile & Marro, 1992),
(Wonham, 1985) and references therein. We recall
here only definitions of (A,B) and (C, A) invari-
ance.

Definition 1. A subspace V of X is called (A,B)–
invariant if

AV ⊂ V + Im B.

Definition 2. A subspace S of X is called (C, A)–
invariant if

A(S ∩KerC) ⊂ S.

All properties on these subspaces and on the
computation of algorithms to characterize these
invariants can be found in references given above.

As seen in Section 4, the problem of attenuating
the effect of the disturbance by a distributed pre-
dictive control law is reduced to the analysis of an
equivalent linear system without delay, and this
theory can be applied. The subspaces V∗A,B,Ker G,
R∗A,B,Ker G, and S∗C,A,Im B , which are respectively
the maximal (A,B)–invariant subspace contained
in Ker G, the maximal controllability subspace
contained in Ker G, and the smallest (C, A)–
invariant subspace containing ImB, play a fun-
damental role in geometric approach.
Any invariant subspace is associated to a spec-
trum, and the subspace is called stabilizing if
the associated spectrum is stable. In the sequel,
V∗g,A,B,Ker G and S∗g,A,B,Ker G respectively denote
the maximal stabilizing (A,B)-invariant subspace
contained in Ker G, and the smallest stabilizing
(C,A)-invariant subspace containing Im B.

Consider the disturbance attenuation problem by
state feedback distributed control law. Then, by
Lemmas 1 and 2, the transfer matrix T1(s) is
independent from any control action, and T2(s) is
a linear system without delay. The problem comes
down to finding a static state feedback F such that
T2(s) is zero. Then applying the classical results
of the geometric approach leads to the following.

Theorem 1.
(i) There exists a state feedback F such that the
closed loop system (1)-(2)-(3) is so that T2(s) = 0
in (6) if and only if

Im(eAhE) ⊂ V∗A,B,Ker G. (14)

(ii) There exists F such that the closed loop
system (1)-(2)-(3) is internally stable and so that
T2(s) = 0 if and only if

Im(eAhE) ⊂ V∗g,A,B,Ker G. (15)

Proof. This theorem is a direct consequence of
Section 4. In fact, in closed–loop, the following



equivalent linear system is a state-space represen-
tation of T2(s),





ψ̇(t) = Aψ(t) + Bu(t) + eAhEw(t)
u(t) = Fψ(t)
z2(t) = Gψ(t)

, (16)

where the disturbance attenuation problem by
distributed control law is equivalent to solve
ẑ2(s)
ŵ(s) = 0 by static state feedback. Conditions (i)
and (ii) are then a direct consequence of the clas-
sical works (Willems & Commault, 1981), (Basile
& Marro, 1992), (Wonham, 1985).

Theorem 1 gives necessary and sufficient condi-
tions for an exact disturbance decoupling problem
on T2(s) with static state feedback distributed
control law, with eventually internal stability. Un-
der these conditions, equality (13) is satisfied.
We can get further conditions using the concept of
almost invariance and the associated subspaces.
Consider the problem of almost disturbance de-
coupling by static state feedback distributed con-
trol law, that is to obtain in closed–loop for (16),
an impulse response h2(t) of the transfer function
from w to z2 such that

∀ε > 0, ∃F s.t. ‖h2‖A ≤ ε,

i.e. ∀ε > 0, ‖z2‖A ≤ ε‖w‖A in closed–loop, where
z2 is the corresponding output of T2(s). Then,
applying the results of (Willems, 1981) to the
system (16), we obtain the following.

Theorem 2.
(i) There exists a feedback F such that the closed-
loop system (1)-(2)-(3) is so that

inf
F
‖Tzw‖1 = ‖h1‖A,

if and only if

Im(eAhE) ⊂ V∗A,B,Ker G + S∗G,A,Im B . (17)

In that case, for every ε > 0, there exists a
feedback F such that ‖T2‖1 < ε.
(ii) There exists a feedback F such that the
closed-loop system (1)-(2)-(3) is stable and so that

inf
F
‖Tzw‖1 = ‖h1‖A ,

if and only if

Im(eAhE) ⊂ V∗g,A,B,Ker G + S∗G,A,Im B . (18)

Proof. The result immediately comes from (16)
and (Willems, 1981).

Consider now the case of a static output injec-
tion distributed control law. Following (Wonham,
1985), the first problem to be treated is the dual
notion of (A,B)–invariance, that is to make the
error of the observer–predictor ep(t) insensible to
the disturbance w. According to the results of

Section 3, and more precisely using the decompo-
sition (7), it appears that minimizing the observed
predicted output estimation error on the time
delay system (1) comes down to a disturbance
estimation decoupling problem on the following
system without delay





ξ̇(t) = Aξ(t) + Bu(t) + Ew(t)
u(t) = LCξ(t)
z2(t) = GeAhξ(t)

, (19)

where the problem is reduced to estimate z2(t)
from the measure y2(t) and to impose a zero
transfer matrix between w and z2. We then obtain
the dual notions of Theorem 1, for the system
(19), using the results of (Wonham, 1985).

Theorem 3.
(i) There exists an output injection L such that
the closed–loop (1)-(4)-(5) verifies T3(s) = 0 if
and only if

S∗C,A,Im E ⊂ Ker(GeAh). (20)

(ii) There exists an output injection L such that
the closed–loop (1)-(4)-(5) is internally stable and
such that T3(s) = 0 if and only if

S∗g,C,A,Im E ⊂ Ker(GeAh). (21)

As in Theorem 2, we can solve an almost decou-
pling disturbance decoupling estimation problem
for the observer–predictor, by a direct adaptation
of the results of (Willems, 1981).

Theorem 4.
(i) There exists an output injection L such that
the closed–loop system (1)-(4)-(5) is so that

inf
L
‖Tzep‖1 = ‖h1‖A,

if and only if

V∗A,E,Ker C ∩ S∗C,A,Im E ⊂ Ker(GeAh). (22)

(ii) There exists an output injection L such that
the closed–loop system (1)-(4)-(5) is stable and so
that

inf
L
‖Tzep‖1 = ‖T1(s)‖A,

if and only if

V∗A,E,Ker C ∩ S∗g,C,A,Im E ⊂ Ker(GeAh). (23)

All these conditions are numerically computable,
and easy to verify.

6. ILLUSTRATIVE EXAMPLE

Let Σ be the system defined by

ẋ(t) =



−1 1 0

0 0 1
0 0 0


 x(t) +




0 0
0 1
1 0


 u(t− 1) + Ew(t)



z(t) = [ 0 1 0 ]x(t), and y(t) = x(t), which is of
the form (1). Then, we obtain

V∗A,B,Ker G =




1 0
0 0
0 1


 , R∗A,B,Ker G =




0
0
1


 ,

and S∗G,A,Im B = V∗A,B,Ker G. Consider the distur-
bance attenuation by state feedback distributed
control law with condition (14). Whereas eA is
upper-triangular, if E = [ 0 0 1 ]T , then

Im(eAE) = [ e−1 1 1 ]> ⊂/ V∗A,B,Ker G,

and then the problem is not solvable. However, if
E = [ 1 0 0 ]T , then this problem is solvable, and
moreover is solvable with internal stability.

Considering now the almost problem in Theorem
2, it is easy to see that it is solvable for all
matrices E, with internal stability. Indeed, for
E = [ 0 0 1 ]T , take a feedback F of the form

F =
[

0 0 f1

0 f2 −1

]
,

with f1, f2 ∈ IR− to ensure internal stability.
Then, it is easy to determine ‖h2‖L1 = − 1

f2
. To

solve the almost disturbance decoupling problem
by state feedback with internal stability, take
ε > 0, and impose ‖h2‖L1 ≤ ε. We obtain f2 ≤
− 1

ε , according with high gain theory if ε → 0
(Willems, 1981). The corresponding feedback is
also given by

u(t) =

[
0 0 f1

0 f2 −1

]
eAx(t) +

t∫

t−1

eA(t−τ)Bu(τ) dτ


 .

7. CONCLUSION

This paper addresses the disturbance decoupling
problem in linear multivariable systems with a
delayed input.
To solve this problem, a static predictive control
law is used, that allow to work in closed–loop on
an equivalent linear system without delay.
Then, geometric conditions are provided to solve
various formulations of the disturbance decou-
pling.
Furthermore, it is shown that any retroaction will
act on the system only after a determined time,
which corresponds evidently to the initial delay.
The case of systems with multiple delays is not
more simple, and is under investigation. Theoret-
ical links with geometric conditions for systems
with coefficients over a ring are also investigated.
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