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Abstract: This paper presents a new method for the synthesis of a PID controller
structure for multi-input multi-output (MIMO) linear dynamic systems in closed
loop. The parameters setting of the MIMO PID controller (composed by many
simple standard PID controllers) uses interesting properties of a complete set of
orthogonal functions in general and shifted Legendre polynomials in particular and
specifically the operational matrix of integration. The considered technique allows
the conversion of differential state equations in a set of algebraic ones depending on
PID structure parameters by expanding the system inputs and outputs variables
into orthogonal functions. The parameters setting of the MIMO PID controller is
leaded by reference to a model system in open loop having all desired performances.
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1. INTRODUCTION

In industrial control, proportional integral
and derivative (PID) controllers still have an
undisputed lead. In spite of system theory
evolution, the most controllers in use are still
PIDs because they can resolve almost all control
problems. The PID controllers offer many
advantages:

• they have a standard and simple structure
with the P, I and D blocks.

• they can be found in all technologies:
analogical or digital electronics, hydraulic or
pneumatic

• they are presented to the user under a unique
form in all technologies.

• their tuning is quite easy and can be leaded
even when they are on the industrial plant.

Over the past decades, an enormous amount
of effort has been expended in designing these
controllers beginning by the well-known Ziegler &
Nichols method for SISO systems (Ziegler and
Nichols, 1942). Hundreds of research papers, a
number of M.Phil./Ph.D. thesis and books have
been written on this subject (Unar et al., 1996).
Despite these advancements and improvements,
the design of PID controllers, especially for MIMO
systems (Multi-Input Multi-Output), is still a
challenge for engineers and researchers (Unar et

al., 1996). Many methods were developed and
improved as:



• Generalised Ziegler-Nichols Method
(Neiderlinski, 1971),

• Seraji’s Method (Seraji and Tarokh,
1977),

• Biggest log Modulus (BLT) Method
(Luyben, 1986),

• Characteristic Locus Design Method
(Zhuang, 1992),

• Zhuang and Atherton’s Method
for Optimisation (Zhuang and
Atherton, 1994),

and many interesting others using iterative LMI
approach (Lin et al., 2004), a fuzzy neural
network (Lee and Teng, 2003) or multiobjective
genetic algorithms (Herreros et al., 2002).

In this paper, a new analytical method for MIMO
PID controllers synthesis by using the orthogonal
functions as a tool of approximation is presented.

In recent decades, the problem of analysis,
modelling and control of linear systems has
been approached via orthogonal functions. The
main characteristic of this technique is that it
reduces the system of differential equations to
an algebraic one, thus greatly simplifying the
problem. For this purpose, the operational matrix
of integration that approximates the integral of
the basis function is used.

This approach originated from the use of Walsh
(Chen and Hsiao, 1975) and block-pulse
(Shih et al., 1978) functions was later extended
to orthogonal polynomial series such as the
Laguerre (King and Paraskevopoulos, 1979),
the Chebychev (Paraskevopoulos, 1983),
the Hermite (Paraskevopoulos and
Kekkeris, 1983) and the Legendre polynomials
(Paraskevopoulos, 1985). They were also
used with non linear systems (Benhadj

Braiek, 1990).

This paper is organised as follows: in section
2, the orthogonal functions are presented with
interesting properties and their use for systems
description. The section 3 is reserved to the
description of the shifted Legendre polynomials.
The proposed method for MIMO PID controllers
synthesis using orthogonal functions is derived
in section 4. In the last section, an example is
presented to emphasise the effectiveness of this
method.

2. ORTHOGONAL FUNCTIONS

The continuous orthogonal functions have been
adopted by many researchers as a convenient and
sharp tool to approximate the solution of physical
systems. The key idea of this technique is that all
analytical function f(t) absolutely integrable can
be developed as follows:

f(t) =

∞
∑

i=0

fiφi(t) (1)

where the elements φ0(t), φ1(t), . . . , φN−1(t) are
basis functions which are orthogonal on a certain
interval and fi are constant coefficients. The
following integral property of basis vectors is also
exploited for differential equation solution:

t
∫

α

. . .

t
∫

α

Φ(τ) (dτ)k ∼= P kΦ(t) (2)

where P is a square constant matrix and

ΦT (t) =
[

φ0(t) φ1(t) . . . φN−1(t)
]

Clearly, the form of P depends on the particular
choice of the basis vector Φ(t).

The Legendre polynomials may have advantages
over other orthogonal functions. This was shown
by way of examples (Paraskevopoulos, 1985)
where Legendre polynomials converge to the exact
solution of a differential equation faster than
the other types of orthogonal functions, as, for
example Walsh functions, Hermite and Laguerre
polynomials.

3. SHIFTED LEGENDRE POLYNOMIALS

3.1 Legendre polynomials

The Legendre polynomials are defined for the time
interval x ∈ [−1, 1] and they have the following
analytical form given by the Olinde-Rodrigues
formula (Bell, 1968):

Ln(x) =
1

2nn!

dn(x2 − 1)n

dxn
(3)

Using the above expression for Ln(x) , one
may readily determine the first few Legendre
polynomials : L0(x) = 1, L1(x) = x, ...
The Legendre polynomials are also given by the
recursive formula (Gradshteyn and Ryzhik,
1979) :

(n + 1)Ln+1(x) = (2n + 1)xLn(x) − nLn−1(x)(4)

The polynomials Li(x) form a complete set and
are orthogonal with

1
∫

−1

Li(x)Lj(x)dx =
2

2i + 1
δij (5)

where δij is the Kronecker delta.



3.2 Shifted Legendre polynomials

For practical use of Legendre polynomials in the
time interval t ∈ [0, tf ], it is necessary to shift
the defining domain of Legendre polynomials from
the interval [−1, 1] to [0, tf ] through the variable
transformation:

x =
2t

tf
− 1, 0 ≤ t ≤ tf (6)

The shifted Legendre polynomials si(t) (i =
0, 1, 2, . . .) for 0 ≤ t ≤ tf are thus given by:

sn+1(t) =
2n + 1

n + 1

2t − tf

tf
sn(t) −

n

n + 1
sn−1(t)(7)

with s0(t) = 1 and s1(t) =
2t

tf
− 1

It is apparent that polynomials sn(t) also
constitute a complete set and are orthogonal with:

tf
∫

0

si(t)sj(t) dt =
tf

2i + 1
δij (8)

Any time function f(t) that is absolutely
integrable on the time interval [0, tf ] may be
expanded into shifted Legendre series as follows:

f(t) =
∞
∑

i=0

fisi(t) (9)

where (Hwang and Guo, 1984)

fi =
2i + 1

tf

tf
∫

0

f(t)si(t) dt (10)

If equation (9) is truncated up to its first N terms,
then it may be written as:

f(t) ∼=

N−1
∑

i=0

fisi(t) = FT
NSN (t) (11)

with FN =
[

f0 f1 . . . fN−1

]T
,

and SN (t) =
[

s0(t) s1(t) . . . sN−1(t)
]T

The shifted Legendre polynomials and coefficients
fi, (i = 0, 1, . . . , N − 1) have the particularity to
minimise the integral squared-error:

ε =

tf
∫

0

(

f(t) −

N−1
∑

i=0

fisi(t)

)2

dt (12)

3.3 Operational matrix of integration

Since the shifted Legendre polynomials si(t), (i =
0, 1, . . .) satisfy (Gradshteyn and Ryzhik, 1979)
the differential equation:

U1 Y1YC1

YC2 U2 Y2

.

..

-

-

+

+

H11(p)

H21(p)

H12(p)

H22(p)

+

+

+
+

ε1

ε2

PID21

PID22

+

+

+
+

TITO PID Controller
TITO System

U11

U12

U21

U22

PID12

PID11

Fig. 1. TITO system with TITO PID controller

si(t) =
tf

2(2i + 1)

[

dsi+1

dt
−

dsi−1

dt

]

(13)

and si(0) = (−1)i , it can be easily shown that
the integrals of si(t), (i = 0, 1, . . .) are given by:

t
∫

0

si(τ)dτ =











tf

2
[s1(t) − s0(t)] , i = 0

tf

2(2i + 1)
[si+1(t) − si−1(t)]

(14)

From equation (14) we can obtain the integral of
truncated shifted Legendre vector

t
∫

0

SN (τ)dτ ∼= PNSN (t) (15)

where PN is the operational matrix of integration
(Hwang and Shih, 1982).

4. PROPOSED METHOD FOR MIMO PID
CONTROLLERS SYNTHESIS

4.1 Problem formulation

The class of systems considered are the
multi-input multi-output (MIMO) linear
time-invariant systems described by the state
equations:

{

Ẋ = AX + BU

Y = CX
(16)

A, B and C are constant matrices with respective
dimensions (n × n), (n × m) and (m × n) . The
structure of the proposed MIMO PID controller
is associated to the considered system in closed
loop.

For presenting the proposed method, consider a
TITO (Two Inputs -Two Outputs) system. The
TITO PID controller structure is shown by Figure
1. The control vector can be written as follows:

U =





U1

U2



 =





U11 + U21

U12 + U22



 (17)



U =













































Kp11(YC1 − Y1) + Ki11

∫

(YC1 − Y1)dt+

+Kd11

d(YC1 − Y1)

dt
+ Kp21(YC2 − Y2)+

+Ki21

∫

(YC2 − Y2)dt + Kd21

d(YC2 − Y2)

dt

Kp12(YC1 − Y1) + Ki12

∫

(YC1 − Y1)dt+

+Kd12

d(YC1 − Y1)

dt
+ Kp22(YC2 − Y2)+

+Ki22

∫

(YC2 − Y2)dt + Kd22

d(YC2 − Y2)

dt













































where Kpjk, Kijk and Kdjk (jk = 11, 12, 21, 22)
are the parameters of the Proportional, Integral
and Derivative blocks of the standard PID
controllers.

Then, the control vector can be written under the
following form:

U =

[

Kp11 Kp21

Kp12 Kp22

]

(YC − Y )

+

[

Ki11 Ki21

Ki12 Ki22

]
∫

(YC − Y )dt

+

[

Kd11 Kd21

Kd12 Kd22

]

(ẎC − Ẏ )

(18)

where YC =

[

YC1

YC2

]

and Y =

[

Y1

Y2

]

The definition of proportional K̄p, integral
K̄i and derivative K̄d gain matrices given by:

K̄p =

[

Kp11 Kp21

Kp12 Kp22

]

K̄i =

[

Ki11 Ki21

Ki12 Ki22

]

K̄d =

[

Kd11 Kd21

Kd12 Kd22

]

leads to the equation:

U = K̄p(YC − Y ) + K̄i

∫

(YC − Y ) dt

+K̄d(ẎC − Ẏ )
(19)

With Y = CX, the state equation will be written
as follows:

Ẋ = AX + BK̄p(YC − CX)

+BK̄i

∫

(YC − CX) dt + BK̄d(ẎC − CẊ)
(20)

Integration of equation (20) yields:

(BK̄pC − A)

∫

Xdt + BK̄iC

∫∫

Xdt

+(In + BK̄dC)X = BK̄p

∫

YCdt

+BK̄i

∫∫

YCdt + BK̄dYC

(21)

The expansion of the state vector X and the
input Vector YC into truncated shifted Legendre
polynomials as follows:

X(t) ∼=

N−1
∑

i=0

XN,isi(t) = XNSN (t) (22)

YC(t) ∼=

N−1
∑

i=0

YCN,isi(t) = YCNSN (t) (23)

The single integration of the shifted Legendre
basis vector can be approximated by equation
(15). The double integration is approximated by:

t
∫

0

t
∫

0

SN (τ)dτ2 ∼=P 2
NSN (t) (24)

The equation (21) can then be approached by the
following one:

[(BK̄pC − A)XNPN + BK̄iCXNP 2
N

+(In + BK̄dC)XN ]SN =
[

BK̄pYCNPN + BK̄iYCNP 2
N + BK̄dYCN

]

SN

(25)

By using the V ec operator and the property
(Brewer, 1978):

V ec(ABC) = (CT ⊗ A)V ec(B)

(for any matrices A, B and C having appropriate
dimensions, where ⊗ is the Kronecker product),
the equation (25) yields to (Ayadi, 2004):

M(K̄p, K̄i, K̄d)V ec(XN ) =
T (K̄p, K̄i, K̄d)V ec(YCN )

(26)

where

M(K̄p, K̄i, K̄d) = PT
N ⊗ (BK̄pC − A)

+P 2T
N ⊗ BK̄iC + IN ⊗ (In + BK̄dC)

(27)

T (K̄p, K̄i, K̄d) = PT
N ⊗ BK̄p

+P 2T
N ⊗ BK̄i + IN ⊗ BK̄d

(28)

4.2 Reference model

The chosen reference is represented by its state
equations:

{

Ż = EZ + FYC

Yref = GZ
(29)

with E a square (r × r) matrix. An analogue
development (integration of the state equation,
expansion in shifted Legendre series, operator
Vec...) gives:

V ec(ZN ) = WV ec(YCN ) (30)

where

W =
(

Ir×N − PT
N ⊗ E

)−1
(PT

N ⊗ F )



4.3 Proposed approach for problem solution

It is desired that the considered system with the
TITO PID controller has an analogue dynamic
behaviour to the reference model for all inputs
YC (YC1 and YC2). This condition yields

Y = Yref ⇔ CX = GZ ⇔ CXN = GZN (31)

With the Vec operator, this condition becomes

(IN ⊗ C)V ec(XN ) = (IN ⊗ G)V ec(ZN ) (32)

Finally, the obtained equations system is
composed by equations (26), (30) and (32). By
substitution, it gives:

(IN ⊗ C) M−1T V ec(YCN ) =
(IN ⊗ G)WV ec(YCN )

(33)

This equation is verified for all inputs YC , so it
gives a set of algebraic equations verified by the
matrices of proportional, integral and derivative
gains respectively K̄p, K̄i and K̄d:

(IN ⊗ C) M−1 T = (IN ⊗ G) W (34)

where M and T are square matrices depending on
K̄p, K̄i and K̄d and are given by equations (27)
and (28).

The parameters of the TITO PID controller (gain
matrices) are derived by minimising the norm:

ξ =
∥

∥(IN ⊗ C) M−1 T − (IN ⊗ G) W
∥

∥ (35)

representing the norm of the difference between
both parts of the equation (34). This constrained
minimisation can be leaded by using the function
“fmincon” of the software “MATLAB”.

5. SIMULATION EXAMPLE

Consider a TITO linear process defined by its
transfer matrix given by:

H(p) =











0.01p2 + p + 1

p3 + 6p2 + 6p + 1

0.095p + 0.5

p3 + 6p2 + 6p + 1

0.25

p3 + 6p2 + 6p + 1

1

p3 + 6p2 + 6p + 1











where p denotes the Laplace operator.

The reference model is an uncoupled TITO system
with desired performances. This model is defined
by the transfer matrix:

Hr(p) =











0.723

p2 + 1.53p + 0.723
0

0
0.723

p2 + 1.53p + 0.723
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Fig. 2. Step response in open-loop of the TITO
considered system and the reference model

0 2 4 6 8 10 12 14 16 18 20

1.4

1.2

1

0.8

0.6

0.4

0.2

0

System with PID TITO Controller

Reference model

0 2 4 6 8 10 12 14 16 18 20

Time (s)

Closed-Loop Step Response Output 1 Closed-Loop Step Response Output 2

Time (s)

System with PID TITO Controller
Reference model

System with PID TITO Controller
Reference model

Fig. 3. Step response in closed-loop of the
TITO considered system with the TITO PID
controller and the reference model
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Fig. 4. Closed-loop step responses (Input 2 -
Output1 and Input 1 - Output 2)

The step responses of the considered system in
open loop and the reference model are shown by
Figure 2.

Figure 3 shows the process closed-loop response
with the TITO PID controller obtained by the
proposed method for both outputs.

The uncoupling of both outputs can be seen with
the cross-step responses: input 1- output 2 and
input 2- output 1 in Figure 4.

6. CONCLUSION

In this paper, a new analytical method was
introduced for MIMO PID controllers synthesis



by using orthogonal functions as a tool of
approximation. The presented method was
applied to a TITO interconnected process but
can be easily extended to MIMO systems.
The use of operational matrix of integration
has permitted the transformation of differential
equations into algebraic ones depending on MIMO
PID Controller parameters. This technique allows
the synthesis of MIMO PID controller with a
chosen reference model.

The shifted Legendre polynomials have been used
as an orthogonal function basis but the method
still effective with any other basis such as :
Walsh and Block-pulse functions or Chebychev,
Laguerre, Hemite polynomials.
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