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1. INTRODUCTION

The state estimation problem is considered for the
continuous stochastic systems subject to additive and
multiplicative Wiener processes. The classical exam-
ple of a system with additive Wiener noises is the
Brownian motion (Åström, 1970). The example when
a Wiener disturbance is multiplicative is given by
the model of a re-entry vehicle with the intensity of
the stochastic drag coefficient increasing linearly with
time as the vehicle descends into a denser atmosphere.

It seems that the state estimation problem for the sys-
tems described by a high-dimensional ordinary differ-
ential model with additive and multiplicative Wiener
noises has not been previously studied. The case of
additive and multiplicative white noises, studied by
the authors simultaneously, allows the reformulation
of the problem in the state space form with state
dependent noise intensities. For the case of multi-
plicative and additive Wiener noises, the state space
reformulation is not possible, and the result of the
paper substantially depends on the recently developed
optimal filtering theory for the Itô-Volterra systems
(Zhang et al., 2004).

1 This work was supported under the US NSF Grant CTS-
0117300 and the Mexican National Science and Technology Coun-
cil (CONACyT) Grant 39388-A.

The next section summarizes the results on the optimal
filtering for the Itô-Volterra systems, which are used to
derive the main results of the paper.

2. OPTIMAL FILTER FOR ITO-VOLTERRA
SYSTEMS

Let (Ω,F,P) be a complete probability space with
an increasing right-continuous family of σ-algebras
Ft , t ≥ 0, and let (W1(t),Ft , t ≥ 0) and (W2(t),Ft , t ≥
0) be independent Wiener processes with the unit
variance intensities. Here, Ω is the sample space, F is
a set of subsets on which the probability measure (or,
simply, probability) is defined, and P is the probability
defined on F . All subsets of F form a σ-algebra, and
Ft denotes a family of subsets (σ-algebra) for every
t such that for t1 < t2, Ft1

⊂ Ft2
. The partly observed

Ft -measurable random process (x(t),z(t)) is described
using the Itô-Volterra equations:

x(t) =
∫ t

0
(A(t,s)x(s)+B(t,s)u(s))ds

+
∫ t

0
G(x, t,s)dW1(s), (1)

z(t) =
∫ t

0
C(t,s)x(s)ds+

∫ t

0
H(t,s)dW2(s), (2)



where x(t) ∈ Rn is the state vector, and z(t) ∈ Rm is
a vector of measurements integrated over the time
interval [0, t]. The vector-valued function B(t,s)u(s)
describes the effect of known system inputs. Functions
A(t,s), B(t,s) are smooth in t uniformly in s. Func-
tions C(t,s), H(t,s) are of appropriate dimensions
and continuous in t and s. C(t,s) is a nonzero matrix
and G(x, t,s)GT (x(s), t,s)≥ 0, H(t,s)HT (t,s) > 0. To
simplify notation, denote

(H(t,s)HT (t,s))−1 = ϒ(t,s) (3)

throughout the paper. Except for state-dependent func-
tion G, all coefficients in the equations (1) and (2) are
deterministic functions of t and s, both of which are
independent (time) variables with t ≥ s ≥ 0. Without
loss of generality, zero initial conditions are assumed.

The estimation problem is to find the estimate x̂(t)
of the system state x(t) described by the Itô–Volterra
model (1) based on the observation process Z(t) =
{z(s),0 ≤ s ≤ t}, such that the Euclidean 2-norm

J = E[(x(t)− x̂(t))T (x(t)− x̂(t)) | FZ
t ] (4)

is minimized at every time moment t. Here, E[ξ (t) |
FZ

t ] means the conditional expectation of a stochastic
process ξ (t) = (x(t)− x̂(t))T (x(t)− x̂(t)) with respect
to the σ - algebra FZ

t generated by the observation
process z(t) in the interval [t0, t]. In an alternative
formulation, the objective is to find the conditional ex-
pectation m(t) = x̂(t) = E(x(t) | FZ

t ). As usual, P(t) =
E[(x(t)−m(t))(x(t)−m(t))T | FZ

t ] is the estimation
error covariance matrix.

This formulation is, in fact, the Kalman filtering prob-
lem for the integral Itô-Volterra system. This for-
mulation is more general than the problem consid-
ered in (Kleptsina and Veretennikov, 1985; Shaikhet,
1987), since the Itô-Volterra measurements model,
equation (2), cannot be reduced to the standard differ-
ential form. The standard state space formulation can
be recovered by making all functional parameters in
(1) and (2) dependent on s only.

The solution of the optimal filtering problem for the
system (1)–(2) was first reported in (Basin, 2000),
which generalized results (Kleptsina and Vereten-
nikov, 1985; Shaikhet, 1987) obtained for systems
with Itô-Volterra dynamics and standard differential
measurements. It is shown in (Kleptsina and Vereten-
nikov, 1985; Shaikhet, 1987) that the variance matrix
P(t) alone is not sufficient to completely characterize
the state estimation process and to obtain a closed
form of filtering equations. Instead, for the systems
with the Itô-Volterra dynamic model, equation (1),
the explicit solution can be obtained in terms of the
integral cross-correlation function f (t,s), which char-
acterizes the deviation of the optimal estimate m(t)
from unknown true state x(t) and is defined as:

f (t,s) = E[(xt
s −mt

s)(x(s)−m(s))T | FZ
s ], (5)

where xt
s can be viewed as a state with independent

(time) variable s and parameter t:

xt
s =

∫ s

0
[A(t,r)x(r)+B(t,r)u(r)]dr

+
∫ s

0
G(x(r), t,r)dW1(r). (6)

The governing equation for xt
s can be differentiated

with respect to s to yield the state space form of equa-
tion (6). The conditional mean mt

s = E[xt
s | FZ

s ] is the
estimate of xt

s. Note that function f is a generalization
of the variance P, since f (t, t) = P(t). Furthermore,
for s = t, xt

s = x(t) and zt
s = z(t).

Theorem 1. (Basin, 2000; Zhang et al., 2004) The
optimal in the Kalman sense estimate m(t) of the
states of system (1) with measurements (2) satisfies
the following optimal filter equation

m(t) =
∫ t

0

[
A(t,s)m(s)+B(t,s)u(s)

]
ds

+
∫ t

0
Ktttt(s)

[
dz(s)−C(t,s)m(s)ds

]
, (7)

where the componentwise multiplication by the m-
dimensional measure µ(t) is used, and the filter gain
is given by

Kabcd(e) = f (a,e)CT (b,e)(H(c,e)HT (d,e))−1. (8)

The function f (t,s) is found from the following
Riccati-like equation

f (t,s) =
∫ s

0

[
A(t,r) f T (s,r)+ f (t,r)AT (s,r)+Ψ

]
dr

−
∫ s

0

[
Ktsss(r)C(s,r) f T (s,r)+Ktttt(r)C(t,r) f T (s,r)

−1
2

Ktttt(r)H(t,r)HT (s,r)ϒ(s,r)C(s,r) f T (s,r) (9)

−1
2

Kssss(r)H(s,r)HT (t,r)ϒ(t,r)C(t,r) f T (t,r)
]
dr,

where Ψ = E[G(x(r), t,r)GT (x(r),s,r) | FZ
r ].

3. MAIN RESULTS

The problem is to find an optimal estimation of
ξ (n−1)(t), ξ (n−2)(t), . . ., ξ (0)(t) given the ODE model
for ξ with additive and multiplicative Wiener noises,
and measurements of any linear combination of
ξ (n−1)(t), · · · ,ξ (t), or a measurement vector of differ-
ent linear combinations of the derivatives of ξ up to
the order n− 1. The case of time-invariant determin-
istic coefficients of the n-dimensional ordinary differ-
ential model is first considered.



3.1 Case 1: Time-Invariant Coefficients

Consider a general linear ODE with time-invariant
deterministic coefficients, and multiplicative and ad-
ditive Wiener noises:

ξ (n)(t)+(a1 +W 1
1 (t))ξ (n−1)(t)+· · ·+(ai+W i

1(t))ξ
(i)(t)

+ · · ·+(an +W n
1 (t))ξ (t)=λ (t)+W 0

1 (t), (10)

where W i
1(t), i = 0, 1, . . . ,n are the independent

Wiener processes. Assuming zero initial conditions
ξ (0) = ξ ′(0) = . . . = ξ (n−1)(0) = 0 and zero forcing
before the initial time, λ (0) = 0, the integration of the
ODE model yields

ξ (n−1)(t) =

−
∫ t

0
a1ξ (n−1)(s)ds−

∫ t

0
W 1

1 (s)ξ (n−1)(s)ds−·· ·

−
∫ t

0
aiξ

(n−i)(s)ds−
∫ t

0
W i

1(s)ξ
(n−i)(s)ds−·· ·

−
∫ t

0
anξ (s)ds−

∫ t

0
W n

1 (s)ξ (s)ds

+
∫ t

0
λ (s)ds+

∫ t

0
W 0

1 (s)ds. (11)

The following lemma (Cakmak et al., 1987) is used in
subsequent derivations.

Lemma 1: For i = 2, · · · , n

ξ (n−i)(ν) =
∫ ν

0

(ν − s)(i−2)

(i−2)!
ξ (n−1)(s)ds. (12)

Integration of equation (11) with ν ∈ [0, t] gives

∫ t

0
ξ (n−i)(ν)dν=

∫ t

0

[∫ ν

0

(ν − s)(i−2)

(i−2)!
ξ (n−1)(s)ds

]
dν

=
∫ t

0

(t − s)i−1

(i−1)!
ξ (n−1)(s)ds, (13)

where the result of Lemma 1 was used.

In equation (11), consider terms of the form
W i

1(ν)ξ (n−i)(ν), for i = 1, . . . ,n. The following chain
of equalities is obtained using the interchange of the
integration variables, followed by integration by parts:

∫ t

0
W i

1(ν)ξ (n−i)(ν)dν =
∫ t

0
W i

1(ν)dξ (n−i−1)(ν)

= W i
1(t)ξ

(n−i−1)(t)−
∫ t

0
ξ (n−i−1)(ν)dW i

1(ν)

=
∫ t

0
ξ (n−i−1)(t)dW i

1(ν)−
∫ t

0
ξ (n−i−1)(ν)dW i

1(ν)

=
∫ t

0

(
ξ (n−i−1)(t)− ξ (n−i−1)(ν)

)
dW i

1(ν)

=
∫ t

0

[∫ t

0

(t − r)i−1

(i−1)!
ξ (n−1)(r)dr

−
∫ ν

0

(ν − r)i−1

(i−1)!
ξ (n−1)(r)dr

]
dW i

1(ν). (14)

Therefore, each term of (11), which includes the
Wiener process as a part of the integrand, can be trans-
formed into the integral with respect to the differential
of the Wiener process W i

1(ν).

Using the results (13) and (14) in equation (11), ob-
tain:

ξ (n−1)(t) = −a1

∫ t

0
ξ (n−1)(ν)dν

−
∫ t

0

[∫ t

0
ξ (n−1)(r)dr−

∫ ν

0
ξ (n−1)(r)dr

]
dW 1

1 (ν)

−·· ·−ai

∫ t

0

(t − s)i−1

(i−1)!
ξ (n−1)(s)ds

−
∫ t

0

[∫ t

0

(t − r)i−1

(i−1)!
ξ (n−1)(r)dr

−
∫ ν

0

(ν − r)i−1

(i−1)!
ξ (n−1)(r)dr

]
dW i

1(ν)−·· ·

−an

∫ t

0

(t − s)n−1

(n−1)!
ξ (n−1)(s)ds

−
∫ t

0

[∫ t

0

(t − r)n−1

(n−1)!
ξ (n−1)(r)dr

−
∫ ν

0

(ν − r)n−1

(n−1)!
ξ (n−1)(r)dr

]
dW n

1 (ν)

+
∫ t

0
λ (ν)dν +

∫ t

0
(t −ν)dW 0

1 (ν), (15)

where the last term of (11) is transformed into the
last term of the above equation following the same
procedure as used to obtain equation (14). Setting for
consistency s = r and ν = s, obtain the description
of the system with additive and multiplicative Wiener
noises in the standard Itô-Volterra form (1) with ξ (n−1)

as a state:

ξ (n−1)(t)=
∫ t

0

[(− n

∑
i=1

ai
(t − s)i−1

(i−1)!
)
ξ (n−1)(s)+λ (s)

]
ds

+
∫ t

0
G(ξ (n−1), t,s)dW1(s), (16)

where

G(ξ (n−1), t,s) =
[
G0 G1 · · · Gi · · · Gn

]
(17)

G0(t,s) = (t − s)

G1(ξ
(n−1), t,s) = −

∫ t

0
ξ (n−1)(r)dr +

∫ s

0
ξ (n−1)(r)dr

· · ·
Gi(ξ

(n−1), t,s) = −
∫ t

0

(t − r)i−1

(i−1)!
ξ (n−1)(r)dr

+
∫ s

0

(s− r)i−1

(i−1)!
ξ (n−1)(r)dr

· · ·
Gn(ξ (n−1), t,s) = −

∫ t

0

(t − r)n−1

(n−1)!
ξ (n−1)(r)dr

+
∫ s

0

(s− r)n−1

(n−1)!
ξ (n−1)(r)dr,

W T
1 (s)=

[
W 0

1 (s) W 1
1 (s) W 2

1 (s) · · · W n−1
1 (s) W n

1 (s)
]
,



and W1(t) is the (n + 1)-dimension column vector
of independent Wiener noises with E[W1(t)] = 0,
cov[W1(t)] = tI.

Now, the measurement model should be cast in the
Itô-Volterra form. Suppose ξ (n− j)(t), j = 1,2, · · · ,n,
is measured, i.e.,

y(t) = ξ (n− j)(t)+H(t)ω2(t). (18)

Then the integral measurement

z(t) =
∫ t

0
y(s)ds

can be written in the form of equation (2) with
ξ (n−1)(t) as the state variable:

z(t) =
∫ t

0

(t − s) j−1

( j−1)!
ξ (n−1)(s)ds+

∫ t

0
H(s)dW2(s).

(19)
The optimal filter for the system (10) with measure-
ments (18) represented in the Itô-Volterra form is ob-
tained applying Theorem 1 to the dynamic system
(16), (19):

m(t) =
∫ t

0

[(− n

∑
i=1

ai
(t − s)i−1

(i−1)!
)
m(s)+λ (s)

]
ds

+
∫ t

0
f (t,s)

(t − s) j−1

( j−1)!
ϒ(s)

×[
dz(s)−(t − s) j−1

( j−1)!
m(s)ds

]
, (20)

f (t,s) =
∫ s

0

[(− n

∑
i=1

ai
(t − r)i−1

(i−1)!
)

f (s,r)

+ f (t,r)
(− n

∑
i=1

ai
(s− r)i−1

(i−1)!
)
+Ψ

]
dr

−
∫ s

0
f (t,r)ϒ(r)

[
(
(s− r) j−1

( j−1)!
)2 +(

(t − r) j−1

( j−1)!
)2

− (s− r) j−1(t − r) j−1

(( j−1)!)2

]
f (s,r)dr, (21)

where Ψ = E[G(x(r), t,r)GT (x(r),s,r) | FZ
r ].

Each component Gi, i = 0,n can be written as a sum
of two terms: the first one is a function of t only, and
the second one is the function of s only. Therefore, the
vector G can be represented as

G(t,s) = f1(t)+ f2(s) (22)

and, in simplified notation,

Ψ = E[( f1(t)+ f2(r))( f1(s)+ f2(r)) | FZ
r ]

= E[ f1(t) f1(s)+ f1(t) f2(r)+ f1(s) f2(r)

+ f2(r) f2(r) | FZ
r ]. (23)

The constructive expression for Ψ is obtained by cal-
culating the expectation operator for four additive
terms in the last equation. Consider the estimation of
one of the expectation operators. Take E[ f1(t) f1(s) |

FZ
r ] as an example. Since for any random x1(t) and

x2(t)

E[(x1(t)x2(t) | FZ
t ]

= E[(x1(t)− x̂1(t))(x2(t)− x̂2(t)) | FZ
t ]

+x̂1(t)x̂2(t), (24)

obtain that

E[ f1(t) f1(s) | FZ
r ]

=
n

∑
i=1

E
[∫ r

0

(t − r1)
i−2

(i−2)!
ξ (n−1)(r1)dr1

×
∫ r

0

(s− r2)
i−2

(i−2)!
ξ (n−1)(r2)dr2 | FZ

r

]

=
n

∑
i=1

∫ t

0

∫ s

0

(t − r1)
i−2

(i−2)!
E
[
ξ (n−1)(r1)ξ

(n−1)(r2) | FZ
r

]

× (s− r2)
i−2

(i−2)!
dr1dr2

=
n

∑
i=1

∫ t

0

∫ s

0

(t − r1)
i−2(s− r2)

i−2

((i−2)!)2

×[K(r1,r2)+m(r1)m(r2)]dr2dr2. (25)

The expressions for the other three expectation oper-
ators can be obtained similarly to yield the following
expression for Ψ:

Ψ = (t − r)(s− r)

+
n

∑
i=1

{∫ t

0

∫ s

0

(t − r1)
i−1

(i−1)!
[K(r1,r2)

+m(r1)m(r2)]
(s− r2)

i−1

(i−1)!
dr2dr1

+
∫ t

0

∫ r

0

(t − r1)
i−1

(i−1)!
[K(r1,r2)

+m(r1)m(r2)]
(r− r2)

i−1

(i−1)!
dr1dr2

+
∫ s

0

∫ r

0

(s− r1)
i−1

(i−1)!
[K(r1,r2)

+m(r1)m(r2)]
(r− r2)

i−1

(i−1)!
dr1dr2

+
∫ r

0

∫ r

0

(r− r1)
i−1

(i−1)!
[K(r1,r2)

+m(r1)m(r2)]
(r− r2)

i−1

(i−1)!
dr1dr2

}
. (26)

Assuming r1 ≥ r2, the cross-covariance matrix

K(r1,r2) =

= E[(ξ (n−1)(r1)−m(r1))(ξ
(n−1)(r2)−m(r2))|Ft

r ] (27)

can be found from Theorem 2 in (Kleptsina and
Veretennikov, 1985):



K(r1,r2) = f (r1,r2)+
∫ r1

r2

[
−

n

∑
i=1

ai
(r1 − r3)

i−1

(i−1)!

− (r1 − r3)
2( j−1)

(( j−1)!)2 ϒ(r3) f (r1,r3)
]
K(r3,r2)dr3. (28)

The obtained filter, equations (20) and (21), deter-
mines the optimal estimate of m(t) = ξ̂ (n−1)(t). If the
filtering problem consists only in estimating a deriva-
tive of any order from 0 to (n−2), the optimal estimate
can be found using equation (12), without the need for
multiple integrations.

3.2 Case 2: Time-Varying Coefficients

The system is described by the following ODE with
time-varying deterministic coefficients:

ξ (n)(t)+(a1(t)+W 1
1 (t))ξ (n−1)(t)+ · · ·

+(ai(t)+W i
1(t))ξ

(i)(t)+ · · ·+(an(t)+W n
1 (t))ξ ′(t)

= λ (t)+W 0
1 (t), (29)

where W i
1(t) are independent Wiener processes. As

in the case of time invariant coefficients, assuming
ξ (0) = ξ ′(0) = · · · = ξ (n−1)(0) = λ (0) = 0, integra-
tion of the model gives

ξ (n−1)(t) =

−
∫ t

0
a1(ν)ξ (n−1)(ν)dν

−
∫ t

0
W 1

1 (ν)ξ (n−1)(ν)d(ν)−
·· ·

−
∫ t

0
ai(ν)ξ (n−i)(ν)dν

−
∫ t

0
W i

1(ν)ξ (n−i)(ν)d(ν)−
·· ·

−
∫ t

0
an(ν)ξ (ν)dν −

∫ t

0
W n

1 (ν)ξ (ν)dν

+
∫ t

0
λ (ν)dν +

∫ t

0
W 0

1 (ν)dν . (30)

Using Lemma 1, obtain that

Ia =
∫ t

0
ai(ν)ξ (n−i)(ν)dν

=
∫ t

0
ai(ν)

[∫ ν

0

(ν − s)i−2

(i−2)!
ξ (n−1)(s)ds

]
dν

=
∫ t

0

[∫ t

s
ai(ν)

(ν − s)i−2

(i−2)!
dν

]
ξ (n−1)(s)ds. (31)

Introducing new coefficients ãi(t,s), defined by the
following equation

∫ t

s
ai(ν)

(ν − s)i−2

(i−2)!
dν = ãi(t,s) (32)

for i = 2,3, · · · ,n, obtain that

Ia =
∫ t

0
ãi(t,s)ξ

(n−1)(s)ds. (33)

The standard Itô-Volterra form of equation (30) can
now be written as

ξ (n−1)(t) =
∫ t

0

[(− n

∑
i=1

ãi(t,s)ξ
(n−1)(s)+λ (s)

]
ds

+
∫ t

0
G(ξ (n−1), t,s)dW1(s), (34)

where G(ξ (n−1), t,s) and W1(s) are defined by equa-
tions (17).

Limiting the consideration to the simplest case of the
measurement model (19), the optimal filter for (34) is
obtained applying the general optimal state estimation
result of Theorem 1:

m(t) =
∫ t

0

[(− n

∑
i=1

ãi(t,s)m(s)+λ (s)
]
ds

+
∫ t

0
f (t,s)

(t − s) j−1

( j−1)!
ϒ(s)

×[
dz(s)− (t − s) j−1

( j−1)!
m(s)ds,

]
(35)

f (t,s) =
∫ s

0

[(− n

∑
i=1

ãi(t,s) f (s,r)

+ f (t,r)
(− n

∑
i=1

ãi(t,s)+Ψ
]
dr

−
∫ s

0
f (t,r)ϒ(r)

[
(
(s− r) j−1

( j−1)!
)2 +(

(t − r) j−1

( j−1)!
)2

− (s− r) j−1(t − r) j−1

(( j−1)!)2

]
f (s,r)dr, (36)

where Ψ is given by (26).

4. CONCLUSIONS

In this paper, an optimal, in the Kalman sense, filter
for linear n-dimensional ODE system with multiplica-
tive and additive Wiener disturbances is developed.
Though only a simple measurement model is consid-
ered in the paper, the extension for the case of vector
measurements with the components in the form of an
arbitrary linear combination of derivatives of the state
ξ (t) of any order between 0 and n− 1 can be easily
obtained. The developed filter provides the optimal
estimate of the (n− 1)-th order derivative of the state
of the ODE model. It is shown that the estimation of a
state derivative of any order between 0 to (n− 2) can
be obtained with a single integration of ξ̂ (n−1)(t).

Unlike the optimal state estimation for the general lin-
ear ODE with multiplicative and additive white Gaus-
sian noises, studied by the authors simultaneously, the
case considered in this paper cannot be reduced to the
equivalent state space form. Therefore, the obtained



result substantially relies on the recently developed
optimal filtering theory for the Itô-Volterra systems.
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