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Abstract: A method for finding optimal control policies for first order state-constrained,
stochastic dynamic systems in continuous time is presented. The method relies on solution
of the Hamilton-Jacobi-Bellman equation, which includes adiffusion term related to the
stochastic disturbance in the model. A variable transformation is applied that turns the
infinite-horizon optimal control problem into a linear eigenvalue problem in state-space.
The method is demonstrated on a buffer control problem for a fuel cell-supercapacitor
system. The obtained closed-form solution explains the shape of previous heuristically
found control laws for this type of problem.Copyrightc©2005 IFAC

1. INTRODUCTION

Dynamic programming (Bellman, 1957) has received
a lot of attention in the last decade (Bertsekas and
Shreve, 1996), especially in the field of economics
(Judd, 1998; Wendell and Stein, 2004). It is a powerful
tool that over the years has led to the solution of many
optimal control problems (Doratoet al., 1995), such
as the infinite-time linear quadratic control, which is
one of the most employed synthesis methods for linear
systems. As the cost of computational hardware de-
creases, dynamic programming is becoming important
in numerous applications.

Energy management in hybrid electric vehicles is one
of these, where the problem can be formulated as
a stochastic dynamic programming (Rutquist, 2002).
The problem is a nonlinear buffer control problem
that is different from most other control problems in
that the goal is not to keep the state, or buffer level,
close to a set point. (In fact, a buffer whose state is
kept constant is no longer a buffer!) The objective is
instead to keep the level within bounds with as small
control effort as possible. We will solve this problem
analytically and numerically with a method that can
be generalized to a wider class of optimal control
problems.

The classical LQ control problems handled distur-
bances but required linear systems as well as uncon-
strained inputs and state space. Many steps have been
taken since the first studies towards finding closed
form solutions or numerically tractable methods to
determine finite or infinite time optimal control for
nonlinear systems with stochastic disturbances and
input and state-space constraints.

Within the context of model predictive control (MPC)
recent advances have been made. Manousiouthakis
and Chimelewski (2002) have described a method
to determine the constrained infinite time nonlinear
optimal control problem for the case when there are
no disturbances and the system is linear with respect
to control inputs. Their method relies on the use of
state dependent Ricatti equation (SDRE) approach
introduced by Huang and Lu (1996).

Bemporadet al. (2002) have derived an algorithm for
determining an explicit piece-wise linear control law
for the discrete time constrained LQ-problem. The
system must be linear and they suggest unmeasured
disturbances to be dealt with by standard augmenta-
tion of the state vector, linear observer estimation and
inclusion in the control law.

Here, we address the problem of finding an optimal
control law for state-constrained nonlinear systems



with stochastic disturbances. However, we are limited
to first order systems that are input affine and on the
form,

dx = f(x)dt + k(x)udt + s(x)dw, x ∈ Ω (1)

whereu is the control input anddw is white noise. It
will be shown that for this special class of problems,
the stochastic Hamilton-Jacobi-Bellman equation for
the infinite time optimal control problem can be trans-
formed into a Sturm-Liouville linear eigenvalue prob-
lem. Such problems are easily solved numerically with
standard solvers. In some cases analytical solutions
can be found, as will be shown in the derivation of
a closed form optimal control law for buffer control in
a fuel cell-super capacitor system.

2. PROBLEM FORMULATION

We associate with the system (1) a cost functionc,
which is quadratic inu

c (x, u) = c0 (x) + c1 (x)u + c2 (x)u2 . (2)

Sincec is function of a random variable, we define the
cost functional as an expected value

V (x, t) = E

{

∫ T

t

c (x, u) dτ + cf (x (T ))

∣

∣

∣

∣

∣

x (t) = x

}

,

(3)
whereT is the time horizon,cf is a final cost which
depends on the final state, andc is the instantaneous
cost function which depends on state and control. The
finite-horizon optimal control problem is to find the
u = u(x, t) that minimizes this cost functional while
obeying the state constraint.

The infinite-horizon problem arises if we letT ap-
proach infinity. Since that would make the above inte-
gral to diverge we will instead use the cost functional

λ = lim
T→∞

V

T
. (4)

We know that the optimal control policy is stationary
because of the Markov property of the process, so we
thus seek theu = u(x) that minimizesλ.

In order to be certain that the limit in (4) exists and
is independent of the initial statex(0), we assume
that there exists a stationary distribution for the pro-
cess (given the stationary control policy that we are
considering). This requires, roughly, that the expected
time for the process to diffuse from any given state
to within ǫ of another is finite, which should be true
for almost any engineering stochastic optimal control
problem.

In one dimension, the state constraint can be written
as

p (x ≤ xmin) = 0 (5a)

p (xmax ≤ x) = 0 . (5b)

(Here p denotes probability.) The disturbancedw is
unbounded, so ifs(xmin) > 0 ands(xmax) > 0 the
above implies that

f (xmin) + k (xmin)u (xmin) = ∞ (6a)

f (xmax) + k (xmax)u (xmax) = −∞ , (6b)

which in turn impose conditions onu on the bound-
aries of (1).

With the existence of a stationary distribution, equa-
tion (4) can be rewritten as

λ = E {c (x, u (x))} , (7)

so the optimization problem is completely defined
by the functionsf , k, s, and c plus the boundary
conditions.

It is worth noting that we have not assumed that there
exists any particular stationary point or otherwise pre-
ferred value ofx.

3. THE HAMILTON-JACOBI-BELLMAN
EQUATION

The Hamilton-Jacobi-Bellman (HJB) equation is cen-
tral to optimal control theory. In the finite-horizon case
for the above system it can be written as

−
∂

∂t
V (x, t) = [f (x) + k (x)u]

∂

∂x
V (x, t)

+
1

2
s2 (x)

∂2

∂x2
V (x, t) + c0 (x)

+ c1 (x)u + c2 (x)u2 .

(8)

(See for example (Doratoet al., 1995) for a more de-
tailed discussion on the HJB equation.) The solution to
the optimal control problem can be found by choosing
u so as to minimize−∂V/∂t locally, and integrating
the above equation backwards in time.

For the infinite-horizon problem this is not directly
applicable, because there is no final cost to serve as
initial condition when integrating backwards in time.
Also, as stated above, the integral diverges for infinite
time.

Having already assumed that there exists a station-
ary distribution, resulting in an expected cost per unit
time. The initial state cannot change this expectancy,
but only add an expected one-time cost. We can there-
fore write

V (x, t) = V (x) − λ t . (9)

We will now try to solve for the time-independent
functionV (x).

4. EIGENVALUE METHOD (VARIABLE
SUBSTITUTION)

The optimalu at each point is given explicitly by
setting the derivative of (8) with respect tou equal to
zero, yielding



u = −
k (x) ∂

∂xV (x, t) + c1 (x)

2 c2 (x)
. (10)

All variables (excluding the constantλ) are now func-
tions ofx, but neither oft nor ofu. Thex-dependency
will henceforth be dropped, and the prime symbol will
be understood to denotex-derivatives.

The HJB equation (8) combined with the steady state
condition (9), and the optimalu from (10) gives

λ = −
k2 (V ′)

2

4 c2

+
s2V ′′

2
+ fV ′

−
kc1V

′

2 c2

+ c0 −
c1

2

4 c2

.

(11)

We will assume thatc2 > 0 for all x, i.e. it is costly
to use large|u|. We will also assume thatk 6= 0 for
all x, i.e. the control signal always has some effect on
the state. (It is in fact not difficult to solve the problem
even ifk = 0 on some subset of the domain, but this
will not be discussed here due to space limitations.)

Let W be a twice differentiable function ofx that
satisfies

V ′ = −
BW ′

W
, (12)

where B is an arbitrary strictly positive, piecewise
continuous and bounded function ofx, which we will
specify shortly.

Substituting this into (11) yields

λW = −
s2BW ′′

2
−

k2B2 (W ′)
2

4 c2W
+

s2B (W ′)
2

2W

−
s2 (B′)W ′

2
− fBW ′ +

kc1BW ′

2 c2

+ c0W −
c1

2W

4 c2

.

(13)

The above has the form of an eigenvalue problem ex-
cept for the two nonlinear terms of the type(W ′)2/W .
However, if we chooseB as

B =
2 s2c2

k2
(14)

the troublesome terms cancel, and we can rewrite the
above as

λW = α W ′′ + β W ′ + γ W , (15)

whereα, β andγ are functions ofx that are given by:

α = −
s4c2

k2
, (16)

β =
2 s3c2s

′

k2
−

2 fs2c2

k2
+

c1s
2

k
+ α′ , (17)

and

γ = c0 −
c1

2

4 c2

. (18)

Given homogeneous boundary conditions, we are left
with the linear eigenvalue problem (15) that can eas-
ily be solved using standard analytic and/or numeric
techniques.

Since λ is the cost rate that should be minimized,
we solve for the smallest eigenvalue. (From Sturm-
Liouville theory we know that there exists a smallest
eigenvalue for this problem.)

The optimal control policy is then computed directly
from W by combining (10), (12) and (14) into

u =
s2W ′

kW
−

c1

2 c2

. (19)

4.1 Boundary Conditions

The boundary conditions will, as mentioned above,
often be of the typeu = ∞, which by (10) translates
to

V ′(xmin) = −∞ (20)

This would seem like a problem, since infinity is typi-
cally not something that numerical algorithms handle
well. However, after the variable transformation this
becomes

W (xmin) = 0 , (21)

which is a homogeneous condition that is ideally
suited for eigenvalue problem solvers.

In practice it may sometimes be desirable to specifyu
at the boundary. This gives

Wu =
s2W ′

k
−

c1W

2 c2

, (22)

which is also a homogenous condition.

5. EXAMPLE: SUPERCAPACITOR CONTROL

One major advantage of a hybrid electric vehicle com-
pared to a conventional vehicle is the possibility to
store energy. Developing control strategies for this
energy storage is an important task, which has re-
ceived a lot of attention in recent years (Paganelli
et al., 2001; Rodatzet al., 2004). The performance
measure that is used is generally related to fuel con-
sumption over some specified drive-cycle.

If the exact drive-cycle (speed as function of time)
is known beforehand, then the optimal control can
be computed explicitly as a function of time. This is
rarely the case, and will not be further discussed here.

Much more common is to build heuristic control laws
that give a control signal as a function of state and
then use simulations on a drive-cycle to find proper
heuristics. This second kind of strategy is more dif-
ficult to construct as it requires an engineer to do
many modifications and simulations. It also runs the
risk of overfitting to the simulated drive cycle that it
was developed on, resulting in poor performance in
practice.



5.1 Model

We consider a system consisting of a primary power
source (for instance a fuel cell) and an energy store
(supercapacitor). It provides electric power to some
time-varying load.

The power electronics are controlled by a micro pro-
cessor that ensures that the power balance is always
satisfied, that is:

Pprimary + Psupercap = Pload , (23)

where P [W] denotes net power. Positive signs on
all terms indicate a power flow from the battery and
supercapacitor to the load.

Typically the losses can be described as a function of
the power output of the primary power source. For the
purposes of this example we assume that the following
equation can be used to describe the losses:

Ploss

Pprimary

= C1 + C2Pprimary (24)

The supercapacitor is simply modelled as a lossless
energy storage. Its statex [J] reflects how much energy
it has stored.

x =

∫

−Psupercap dt 0 < x < Q (25)

whereQ [J] denotes the amount of energy that can be
stored in the supercapacitor.

We model the load as a constant average load plus a
white noise.

Pload dt = Pavg dt + Sdw , (26)

wherePavg [W] is the mean load, anddw is a white
noise with zero mean and unity variance.S [W s1/2] is
a measure of the noise amplitude. It can be estimated
from a measured load curve by replacing expectancy
by average in the formula

S =

√

√

√

√

√

1

T
E







(

∫ T

0

(Pload − Pavg) dt

)2






(27)

For a truly white noise, the sameS should be obtained
for any value ofT . In practice, the noise will not
contain infinitely high frequencies, andT should be
chosen sufficiently large compared to the time con-
stants of the process.

5.2 Control

We defineu such that we can write the primary power
output as

Pprimary = Pavg + u . (28)

Combining equation (24) with (28) yields

Ploss = C2u
2 + (C1 + 2C2Pavg)u

+ (C1 + C2Pavg)Pavg (29)

Sinceu is defined to have zero mean, the expectancy
of the middle term is zero, and we can leave it out to
simplify our calculations. Similarly, the last term is,
independent of bothx andu, so it has no importance
for the optimal control. For the cost function (2) we
can then choosec0(x) = 0, c1(x) = 0, andc2(x) =
C2 (Note that we would arrive at the same optimal
control policy usingc0(x) = (C1 + C2Pavg)Pavg and
c1(x) = C1 + 2C2Pavg )

Combining equations (23), (25), (26) and (28) we
obtain the stochastic differential equation

dx = udt − Sdw , (30)

which in terms of (1) translates tof(x) = 0, k(x) = 1,
ands(x) = S.

Inserting the above into the HJB equation yields

−
∂

∂t
V (x, t) = u

∂

∂x
V (x, t)+

S2 ∂2

∂x2 V (x, t)

2
+C2u

2 .

(31)
Substituting the optimalu gives

−
∂

∂t
V (x, t) = −

(

∂
∂xV (x, t)

)2

4C2

+
S2 ∂2

∂x2 V (x, t)

2
.

(32)
Applying the variable substitution and choosingB as

B = 2S2C2 (33)

yields
λW = −S4C2W

′′ . (34)

The boundary conditions are

W (0) = 0 (35a)

W (Q) = 0 . (35b)

5.3 Analytic Solution

The eigenvalue problem (34), (35) has the analytic
solutions

W = sin

(

x

√

λ

S4C2

)

, (36)

where

λ =
N2π2C2S

4

Q2
. (37)

N can be any positive integer. The smallest possibleλ
is obtained forN = 1.

Inserting this into the expression for the optimal con-
trol policy (19) gives the tangent function

u = −
πS2

Q
tan

(

πx

Q
−

π

2

)

. (38)

In this particular case an analytic solution forV is can
easily be obtained fromW by simple integration of
(12).



5.4 Numeric Solution

A numeric solution can be found using the finite
element method. Several software packages exist that
implement the method, and the user has but to specify
the partitioning of space, and the order of piecewise
polynomials that will approximate the solution. We
want the solutionW to be twice differentiable, and
this can be accomplished using piecewise third order
polynomials.

The solution to equation (34) was computed, setting
S = 1, C2 = 1, andQ = 1. For this example we
divided the state-space into three subintervals. With
third order polynomials and continuous first derivative
we then get six degrees of freedom, so we needed to
find the smallest generalized eigenvector to a pair of
six-by-six matrices. The lowest eigenvalue turns out
to beλ = 9.8699, which is not far fromπ2 ≈ 9.8696,
the true answer according to (37).

After computingW , the formula (19) gives the actual
control policy

u =











































3x2 + 0.153x − 0.768

x3 + 0.077x2 − 0.768x
0<x≤

1

3

2x − 1

x2 − x + 0.039

1

3
< x≤

2

3

3x2 − 6.153x + 2.384

x3 − 3.077x2 + 2.384x − 0.307

2

3
<x<1

.

(39)
A piecewise rational function is efficient and easy to
implement in computer code.

6. DISCUSSION AND CONCLUSIONS

We have shown how a simplified battery-supercap-
acitor control problem can be solved in a systematic
way, yielding a closed-form solution.

6.1 Extension to higher dimension

The method presented here can be extended to prob-
lems wherex andu are vectors in some technically
interesting cases. However, due to the computational
cost of solving the eigenvalue problem, it is limited to
problems of low order.

6.2 Comparison to Linear Feedback Control

It is interesting to note that the LQR method, despite
its popularity, fails when applied to this buffer control
problem. This is because the cost function is indepen-
dent of x (c(x, u) = c(u)). 1 Solving for the optimal

1 Another view is that the cost function has anx-dependency in
that it is zero on the interior of the state-space, and infinite on its
boundary. This is obviously not something that can be approximated
well by a quadratic function
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Figure 1. The optimal control law, and a linear control
law with the same expected cost.
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Figure 2. Probability densities. The optimal control
law yields a wider peak, which means that more
of the energy buffer is being utilized.

control policy then gives usu ≡ 0. This control policy
is obviously only admissible ifs ≡ 0. (It is a well-
known fact that for an LQR-problem where the state
is directly measurable, the solution is independent of
the magnitude of the disturbance—so-calledcertainty
equivalence.)

Figure 1 shows the optimal control law, for the case
whereS = 1 andQ = 1. Also depicted is a linear
control law that has the same expected cost, if there is
no penalty for violating the state constraints.

In Figure 2, the probability density functions for the
statex in the stationary processes are shown. Linear
feedback control results in a classical Gaussian dis-
tribution. It is centered around the setpoint and has a
variance that is proportional the noise variance divided
by the controller gain. The tails of the distribution
extend to infinity in both directions, so mathematically
it is impossible to find a linear control law that respects
the constraints.

In the case with the optimal control signal, the proba-
bility density function has the shape of a sine-squared
curve. While the shape is visually similar to the Gaus-
sian curve, there are two important differences. First,



the peak is wider, which means that a larger part of the
buffer is used relatively often. This is important since
it makes little sense to pay for energy storage capac-
ity that is almost never used. Second, the probability
goes to zero at both ends of the interval, so the state
constraints are never violated.

6.3 Complex Models and Numeric Solutions

The model presented here is very simple, in order to
admit a simple closed form solution. A more realis-
tic model would include losses in the supercapacitor,
power electronics, etc. The efficiency of the primary
power source as function of load would also be more
complex. The method demonstrated here cannot han-
dle cost functions that depend arbitrarily onu. How-
ever, sincec(x, u) can be arbitrarily nonlinear inx and
u is a function ofx, it is quite straightforward to solve
the problem iteratively.

The control signal in (38) becomes infinite asx ap-
proaches zero orQ. A realistic control signal would
be limited in magnitude and so would the disturbance.
If the control action can always overcome the distur-
bance, then we can still find a solution to the problem.
If the disturbance can overcome the control, then the
problem has no solution; there will always be a trade-
off between the control cost and the probability of
violating the constraints.

The state-space can be augmented to incorporate dy-
namics in both the load and the primary power source,
yielding a higher-dimensional problem. For instance,
it has been shown in (Rutquist, 2002) how a drive
cycle can be converted into a two-state (speed and
acceleration) stochastic process that can be used for
computation of optimal stationary control laws using
dynamic programming. The control law obtained from
such a computation includes the states of the stochas-
tic process. It will therefore take into account the fact
that a vehicle near its maximum speed is more likely
to go through a period of braking than acceleration.

6.4 Applications to Buffer Control in General

The fact that a proportional controller (with a suitably
chosen gain) is optimal for a cost functionc(x, u) =
ax2 + bu2 has contributed to the popularity of P,
PI, PID, PIDF and similar controllers. The controller
presented here in the buffer control problem can be
thought of as a proportional controller scaled by the
tangent function. It is optimal for the cost function

that is quadratic on an interval and infinite outside that
interval. This leads us to conjecture that most buffer
systems that are today using linear feedback control
would benefit from incorporation of the tangent func-
tion into the controller.

In fact, many buffer systems are already using nonlin-
ear control functions similar to (38). For example, in
(Paganelliet al., 2001) a heuristic function for state-
of-charge control is depicted. The resemblance to the
tangent function is striking.
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