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Abstract: Necessary conditions for the controllability on linear systems with positive control
are presented. The real case is analyzed and the Jordan form representation is employed. The
minimum number of necessary controls to obtain controllability is remarked.
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1. INTRODUCTION the case of linear PCS with complex eigenvalues, to
design positive a global stabilizer.

S this work, the results obtained in (Frizg,al., 2004)
are applied to more general linear systems.

In the last years we can observe a great interest in th
study of controllability of linear systems with positive
control (PCS). The restriction in sign for the input
is natural in many applications. In (Saperstone and

Yorke, 1971), appears the following mechanical prob-

lem: can the pendulum be take to the stable equilib- 2. PROBLEM STATEMENT

rium point by means of the applications of a finite

continuous force in a single direction? One demon- Consider the linear system

strates that the system is controllable with a control to

climb positive. In (Leyva and Carrillo, 2004) appears & = Az + Bu 1)
an annotated and positive feedback that stabilizes this

problem. (Brammer, 1972) gives a characterization with z € R"*, A € R"*", B € R" ™, and the
of the controllability on linear systems with positive control parametew restricted to take values in the
control in terms of the paifA, B). (Frias,et al,, 2004) coneU = R'". Due to this restriction of no-negativity,
give a characterization of the controllability on a class we will say that the control is positive.

of linear systems with positive control, only in terms

of the matrixB. In this paper we are interested in finding necessary

conditions to ensure the controllability of the system
The stabilization problem is similar to the one of (1) with positive control, for the case when the matrix
controllability. In (Smirnov, 1999) the nonlinear sys- A has only real eigenvalues. Firstly, we will find
tems are characterized that are locally stabilizable bynecessary and sufficient conditions to controllability
means of positive controls while in (Korobov, 1979) with positive control, for the next three cases:
necessary and sufficient conditions are establish to de-
termine the local controllability with positive control
in linear systems where the control input is modeled A
in general form. (Leyva and Carrillo, 2004) consider A
A= : (2)

(i) arepeated real eigenvalue in a diagonal form
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A1 The next three propositions were proved in (Frigts,

A al,, 2004).
A= : 3)
o Proposition 1. (i) The control systemi: = Az + Bu,
A with A of the form (2), is positively controllable with

n + 1 controls if and only ifB has rank: and exists a

iii) different real eigenvalues
(i) g columnb,, of B such that

)\1 n+1
Ao A2 (4) b, = Z Cjbj, with c; < 0
J=1j#k
An . . ,
(il) The control system: = Az + Bu, with A of the
For each case, the minimum number of control nec- form (2), is not positively controllable with or less
essary to ensure the controllability is remarked. Next, controls.
we suppose the matria in Jordan form,
Proposition 2. The control systent = Ax+ Bu, with
J1 A of the form (3), is controllable with positive control
) if and only if in the last row ofB are two entries of
Ji opposite signs.

A—

where each bloclJ; is giving by (2),(3) or (4), and In this case two controls are only necessary to obtain
then we establish our main result putting together the the controllability of the system (1)
three cases analyzed.
Proposition 3. The control systent = Ax+ Bu, with
A of the form (4), is controllable with positive control
3. PRELIMINARY RESULTS if and only if in each row ofB3 there are two entries of
opposite signs.

We present the results obtained in (Frésal, 2004)
which give necessary and sufficient conditions on the There exist in this case systems that can be controlled
matrix B, to assure the controllability with positive  from two controls, untin controls.

control, for the cases in that the matrik is of the
form (2), (3) y (4). Besides, a special emphasis is
remarked in those cases where the controllability is
possible with a minimum of controls.

The next proposition characterize a PCS for the case
in that the matrixA4 is in the form (2), but with any
restriction on the number of controls.

Proposition 4. The control systent = Axz+ Bu, with

A of the form (2), is positively controllable if and only
if each vectorv € R™ can be written as a positive
linear combination of column vectors &f

Definition 1. The system (1) is called controllable if,
for eachxq, 2o € R"™ there exists a bounded admis-
sible controlu(t) € U, definded in some interval

0 <t < t1, which steerg:; to x».

roof:
f A = M, wherel € R"*" is the identity matrix,
observe that

In each one of the demonstrations was used the nex
result due to (Brammer, 1972).
Theorem 1.The system (1) is PCS if and only if A*B = )\FB,

(a) The controllability matrix
then,

p— CEEE n71
C=(BAB.-- A""'B) C=(BAB - A"'B)= (BAB --- \""'B)

has ranka,
(b) There exists not real eigenvectoof A7 satisfy- thereforerank(C) = rank(B). Besides, in this case,
ing the inequality each vectow € R" is an eigenvalue ofi”.
We suppose that the system is positive controllable.
v-Bu<0 Then,rank(B) = n, and each vector € R" can

be written as a linear combination of column vectors
of B. We must to show that the mentioned linear
combination is positive. Consider

forallu € R

An equivalent way to express (b) is: (b’) For each real m
eigenvaluey of A, there existu;, up € U such that W={weR"|w= Zcibi, ¢; >0, and||w|| =1}
(v- Buy) (v- Bug) < 0. B

i=1



and, forv € R™, with v # 0, we definef, : W — R,

giving by f,(w) = ﬁq}ﬁ It is not difficult to show that

there existavy € W such thatf, (wg) is maximum.
If f,(wg) = 1 we have finished, because in this case,
v = awy Wherea > 0, and then* || e W. Suppose

that f,(wo) < 1. Let us define

v1 = v — Proyy,v,

whereProy,,, v is the vector that is the projection of
on the vectornwy. Observe that, - wg = 0. It follows
from the theorem 1, that there existss U such that
vy - (Bu) > 0, then, there exists a column &, b,

such thatv; - by > 0; if suchbg there not exists, then
vy - (Bu) could not be positive. Now, we define

vy = ¢1bg + cowy, (5)
such that

(v—v2)-bop=0 (6)

(v—w3) - wp=0 (7)

That s, the vector, is the projection of on the plane
generated by, andw. Such plane exists, because
andw, are not parallel (remember that - wy = 0
andv; - by > 0). Now then, substituting (5) in (6) and
(7), we obtain the next system with unknown variables
C1,Ca.

[1bo]|*c1 + (bo - wo)ea =v - by

(b() ~w0)01 +Cco=v-wy

which solution is giving by

v - bo — (’U . wo)(bo . wo)

C1 =

[[bo|? — (bo - wo)?
ey — [Ibo] |* (v - wo) — (v - bo) (bo - wo)
[[bol? — (bo - wo)?
Observe that
[1bol|* = (bo - wo)* = [[bo||* — |[bo|* cos® By uw,

= ||bo||2 (1 — cos? Qbowo)

= ||b0||2 Sin2 obowov

wherefy, ., is the angle betweeb, andwg, which

is different of zero, ther|by||> — (by - wo)? > 0.
Now then, observe that - wg = ||Proy.,v|| and
that (Proy.,v) - bo = ||Proyw,v||(bo - wp), then

substitutingy = v; + Proy,,,v in the numerator of
c1, we obtain

v by — (v-wp)(bg - wp) =v1 - by + (Proyw,v) - bo —
|[Proyuw, v |(bo - wo)
bo > 0,

:’Ul-

therefore,c; = W > 0. The sign ofc,
: owo
depends of the vectay. If c; > 0, we define
V2

= c W
[|va |

Y

and, by constructionf, (@) > f,(wo), which is a
contradiction, because we have suppose fhét)
is maximum. Ifcs < 0, we define
bo
= ——¢cW
1o

Y

Observe thaty - ( ) < 1, then,c; < 0imply that

|1bo]|*(v - wo) < (v - by) (bo - wp) <
YW v b\ ([, . bo
ST °)§<||v|| ||b0||>( " ||bo||>
V)< (L o
ST °)<<||v|| ||b0||>

fv(w0> < fv(w)’
which is a contradiction.

Now, we assume that each vector € R™ can
be written as a positive linear combination of col-
umn vectors ofB. Then,rank(B) = n, therefore,
rank(C) = n. Letv € R™ be an eigenvector of
AT we must to prove that there exigt,us € U,
such that(v - (Buq)) (v- (Bugz)) < 0. Now then,
by hypothesis, there exigt > 0 andd; > 0, for
i =1,...,m,such tha = > " ¢;b; and —v =
S di bl, whereb; are column vectors oB. If we
madeu; = (c1,...,cm)T anduy = (dy,...,dy,)7T,
then(v - (Buy)) = |jv[|* and(v - (Buz)) = —|[v]*.

Corollary 1. The control systent = Ax + Bu, with

A of the form (2), is positively controllable if and only
if B has rankn and each column vector aB can

be written as a negative linear combination of column
vectors ofBB.

Proof:

Suppose that the system is positively controllable.
Rank(C) n imply that rank(B) n. Let b;

be a column vector 0B, then, by the proposition 4,
—b; can be written as a positive linear combination of
column vectors of3.

Now, let us suppose thaB has rankn, and that
each column vector aB can be written as a negative
linear combination of column vectors &f. It follows
that Rank(C) = n. Considerv € R", then, by
hypothesispy can be written as a linear combination
of column vectors oB. Change those columns &,
that correspond to terms with negative coefficients, by
their respective negative linear combination. In this
way, v can be written as a positive linear combination
of column vectors ofB, then, by the proposition (4),
we conclude that the system is positively controllable.



4. MAIN RESULT of the fundamental theorem of algebr&z) = 0,

consequently,
Consider the linear system
cio=cp=---=¢, =0.
= Ax + Bu
) Theorem 2.If the systemi = Az + Bu is positively
where the matrix controllable then the system;, = J;z; + Byu is
Ji positively controllable, fok = 1,.. ., k.
A = T . 9
Ty Proof:
Observe that
is in Jordan form, where each blodk € R™*" s in
the form (2),(3) or (4), and Ji B,
B, AB=| :
B = , J;: By,
By J{ By
where B; € R™*™_ In a natural way, we can write Ji B
= (z1,...,2x)T, wherez; € R™, and>>F_ n; =
= (w12 z Sign then,

n. Then
1 = Jiz1 + Biu
oo C=(BAB .- A""'B)

t=Ax+ Bu < = 1
By 1By - JT By - JIT By

Ty = Jyxr + Bru

Lemma 1.Consider the control system = Jx + =| B; JiB; --- J"'B; --- J"'B;
Bu with J of the form (4) andz € R®. If the .

matrix B = {b1,..., by} is such thab; hasr entries
different of zero, with) < r < s, then the collection
{b;, Abj, ..., A" 'b,} is linearly independent.

By JyBy - J* T By - J2 By

We define
Proof: Ci=(B; JiB; --- J" By --- J"'By),
Let us suppose that

c1bj + caAb; + - 4 ¢, A"l = 0. then,rank(C;) < n;, foreachi =1,... k, but,
k
We must to prove that; = 0 for eachi = 1,...,r. rank(C) = Zmnk(c-) —n
Consider the polynomial P ' ’
fl@)=c+cx+---+ et
thereforerank(C;) = n;, foreachi = 1,..., k. Now,

which is of degree- — 1. Without loss of generality, '€t us define
suppose thal; = (by;,.-.,b.4,0,...,0)T. Note that

APb; = (Mibyg, .., \D,5,0,...,0)T,

Ci=(BiJiB; -+ J""'By).

We are going to prove thatmk(éi) = n; by cases.

so then (7). Suppose thaf; = \;I, then
T ~
chAk_lbj -0 n; = rank(C;) = rank(B;) = rank(C;).
k’l“:1
& Y ATy =0, fori=1,...,7 )‘i\
k=1 (i7). ConsiderJ; = _ = A+ N, where
_ . 1
< by (ch)\f 1>:0,f0rz:1,...,r A\
o =1 biif(N) =0, fori=1,... r N is a nilpotent matrix such that”™ = 0 if » > n,.

Observe that

what implies thatf(x) hasr different solutions, but
f(x) is ar — 1 degree polynomial, therefore, in virtue JiB; =AM+ N)"B;



=Y CNIN/B;
§=0

= zr: CijBi,
3=0

wherec; = CiA™/ # 0, that is, each column
vector in JIB; can be written as a linear combi-
nation of column vectors ofB; NB; --- N"B;). If

r > mn,;, then each column vector id] B; can be
written as a linear combination of column vectors of
(B; NB; --- N*~1B;). We know thatrank(C;) =
n;, then there exish; linearly independent column
vectors in the matriXB; NB; --- N“~1B;), that is,
rank(C;) = n;.

(#i7) Finally, consider the case whefh hasn; differ-
ent real eigenvalues. Lete R™ be a column vector
of B; with r entries different of zero, with < r < n;.
By the lemma 1{v, Jiv, ..., J/ v} are linearly in-
dependent, then each vect@fv can be written as a
linear combination of them, for > n;. But we know

which is positively controllable by the proposition 1,
but for the whole system the controllability matrix has
rank 3.

5. CONCLUSIONS

Necessary conditions for positively controllable sys-
tems have been found. Brammer has establish an im-
portant characterization in terms of the péit, B),
while in this document have been found necessary
conditions only in terms of the matrig. The principal
result can be used as a very simple negative criteria for
positively controllable systems. In addition, the char-
acterization of the particular Jordan blocks, allows to
establish the number minimum of necessary controls
to obtain the controllability of the system.
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