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Abstract: In this paper the actuation system, often encountered high-precision
motion systems, is studied. To find out the limitations of the actuation system,
a integrated electromechanical model of the amplifier, actuator and mechanics is
derived. This is done in a system’s theory-approach, so that amplifier feedback
circuit design can be tuned using loop-shaping techniques. Stability analysis
is carried out for the amplifier feedback network design, including relevant
uncertainties in the actuator under working conditions. The important limiting
properties of the amplifier are discussed, and translated into constraints for
setpoint design. Further, ideas for improvement of existing actuation systems are
given. Copyright c© 2005 IFAC
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1. INTRODUCTION

In current high-level motion control applications
speed and accuracy are the major concerns. Me-
chanical design is optimized to ensure repro-
ducibility and to prevent performance limiting
artifacts as backlash and friction. Apart from
proper feedback design, feedforward control and
setpoint design become more and more important
in high-performance applications (Lambrechts et
al., 2005), as it can provide over 90 % of the
system’s tracking accuracy. To obtain this high
performance, exact translation from feedforward
signal to the actual actuator force is desired. Al-
though often regarded as ideal, the servo amplifier
and corresponding electronic feedback circuit can
be the limiting factor on this respect. It can de-
crease the intended performance improvement of
a sophisticated feedforward design. In this paper,
the important limiting properties of the actua-
tor systems are discussed, and translated into
constraints for setpoint design. Starting point is

a detailed model of the actuation system, i.e.
a current-controlled Lorentz’ actuator with am-
plifier. Next stability analysis for the amplifier’s
feedback design is discussed. Section 3.1 depicts
in what way the actuation system can be adjusted
to deal with more severe input signals. The theory
is illustrated with practical examples.

2. ELECTROMECHANICAL MODELING

In motion control applications, the amplifier is
often considered as a one-sided coupled static
system with a control voltage ui going in, and a
current io coming out. However, in reality the am-
plifier circuit shows internal dynamics and there
exists mutual coupling between the amplifier, ac-
tuator and the mechanics of the motion system
Fig. 1. The amplifier creates a voltage ua across
the actuator coil, which results in a current ia.
This current is controlled by the amplifier’s feed-
back circuit. As a result of the actuation force



u i
A c t u a t o rA m p l i f i e r M e c h a n i c s

u a

i a

F x

D v

Fig. 1. Bilateral couplings in the actuation chain
in terms of flow and effort.

F , the mechanics start moving over distance x.
The speed difference in the actuator ∆v results
in an induced voltage, which also influences the
behavior of the amplifier. For a correct analysis
of the amplifier dynamics, both mechanical and
electrical subsystems should be modeled. First
actuator, amplifier circuit and mechanics are mod-
eled individually, after which the integrated model
is discussed.

2.1 Lorentz’ actuator modeling

The Lorentz’ actuators, also called air core ac-
tuators, are often used in precision applications.
They enable high accelerations and have a smooth
force characteristic. They are available in different
topologies (e.g. Fig. 2), but all have the same
principle of force production. The force produced

Fig. 2. Typical Lorentz’ actuator topology.

by interaction of the coil current and the magnetic
field can by calculated by Lorentz’ formula:

F = lBia = KF ia (1)

where l is the total length of the wire, B is
the average magnetic flux density in the radial
direction in the volume of the coil, ia is the
current of the wire. KF is called the force constant
of the actuator. Unfortunately, Eq. 1 does not
include the complete dynamical behavior of the
actuator. The current ia is dynamically related
to the input voltage ua, as follows from the
simplified electrical circuit of a voice coil actuator
shown in Fig. 3. The actuator coil has a certain
resistance Rc and inductance Lc. Both effects
result in a voltage drop: ur = iRc and ul = Lc

di
dt .

Furthermore, the speed difference δv between the
field assembly and the coil results in an back-
electromotive voltage uEMF , quantified by the
constant KB . The relation between the input
voltage and the current is given by Kirchoff’s
voltage law:
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Fig. 3. Equivalent circuit representation of
the Lorentz’ actuator (adopted from
(Magnetics Devision, 2002)).

Parameter Min. Max. Max. dev. Dep.
Rc [Ω] 1.95 2.93 40 % T

Lc [µH] 739 639 14 % x

KF [N
A

] 2.98 3.83 25 % T,x

Table 1. Parameter deviations of a typ-
ical Lorentz’actuator.

ua = uR + uL + uEMF

= Rcia + Lc
dia
dt

+ KB∆v (2)

Unfortunately, the parameters in this linear model
are not constant during duty of the actuator.
The force at a constant current deviates from
its maximum value by 10% up to 20% over the
complete stroke of the actuator. Furthermore, the
magnetic flux produced by the permanent magnet
is thermal dependent, resulting in non-constant
KF (see Fig. 4). The parameters Rc, Lc are also

Fig. 4. Typical force characteristic for an Lorentz’
actuator: position and thermal dependent

changing during the operation of the actuator.
An example of the most important parameter
tolerances, due to position x or temperature T
dependency, are listed in Table 1.

2.2 Amplifier modeling

The amplifier converts the output signal of the
digital control system ui into a proportional cur-
rent io. This type of amplifier is called voltage-
to-current convertor (V/I convertor) or transcon-
ductance amplifier. Although there exists specific
transconductance amplifier designs (Mills and
Hawksford, 1989), often a standard power ampli-
fier is adapted to do the job. The nominal behav-
ior of amplifiers with good buffering properties,
high input impedance and low output impedance,
can be studied using Black’s unilateral amplifier
model ((Nordholt, 1983) p.6). It makes use of the
absence of significant coupling between the source



and load of the amplifier. Op-amp (operational
amplifier) circuit design is based on this model
and is ideally suited for a system’s-theory based
analysis (e.g. see (Dostál, 1993)).

+-

- A u d

F e e d b a c k  n e t w o r k

X Z o

l o a ds o u r c e

u o

i o

u -

u +

u d

e o

u i u a , i a

a m p

Fig. 5. Idealized amplifier model. Internal dynam-
ics are simplified to the linear transfer A(s)
and output impedance Zo. Other dynamics
(captured in X) are assumed to be ideal.

The functionality of op-amp circuits, but also am-
plifiers in general, is mainly dependent on the dy-
namics of the feedback network, which is designed
around the inputs and outputs of the amplifier
and is also connected to both the source and the
load (Fig. 5). The open-loop gain A(s) of the
amp is defined as the transfer from the differential
input voltage ud (u+ − u−) to the output voltage
eo (see Fig. 5). Since load conditions of the am-
plifier are severe in this application, the output
impedance Zo is included, and the actual output
voltage becomes uo. In general, the static gain A0

is high and there is one low-frequent dominant
pole τ1, limiting the open-loop bandwidth (Eq. 3).
Within the bandwidth of the closed-loop system,
the amplifier dynamics can be often approximated
by A0

τ1s .

A(s) =
Eo(s)
Ud(s)

=
A0

(1 + τ1s)(1 + τ2s) . . .
≈ A0

τ1s
(3)

By breaking the loop between amplifier and feed-
back network somewhere, the resulting open-loop
system can be used for analysis using basic feed-
back theory. An intersection before the output
voltage eo is a good choice for easy analysis (i.e.
using Black’s model), since only unilateral cou-
pling is present here (see Fig. 5). The open-loop
transfer from eo to the differential input voltage
ud is defined as the feedback factor β(s). It may
be clear that the open-loop is given by A(s)β(s).
The closed-loop transfer from ui to the actual
output voltage or current can be simplified to

Eq. 4, in which G∞ is defined as the closed-loop
gain with an ideal amplifier A → ∞. Here the
direct/feedforward coupling through the feedback
circuit is neglected since it is very small (see
(Dostál, 1993) p.128 for details).

G(s) ≈ G∞(s)
β(s)A(s)

1 + β(s)A(s)
(4)

The most basic way to turn a power amp into
a transconductance amplifier is depicted in Fig.
6. By the feedback circuit, the current through
the actuator ia = io is converted into a feedback
voltage u− by a shunt resistor (Zs = Rs). Ideally,
the input voltage ui is now linked to the output
current by io = 1

Zs
ui, so G∞ = 1

Zs
. The feedback

Z ae ou d u o

i o

u +

u i
+
-

u -

+

-

Z s

Z o

Fig. 6. Op-amp as a transconductance amplifier,
with Zact the actuator impedance and Zs the
shunt impedance.

factor β(s) for this topology, which includes the
actuator dynamics, is given by:

β =
Zs

Zs + Zact + Zo
(5)

2.3 Mechanical modeling

Under normal working conditions, the motion
controller attenuates the effect of resonances. De-
spite of this, the resonant behavior is included in
the model to see if this effects the performance
of the actuation system. The transfer from an
input force Fa at the actuator position pa to the
displacement at this position xa is given in Eq. 6.

Haa(s) =
Xa(s)
Fa(s)

=
1

maas2
+

∞∑
r=1

φr(pa)2

s2 + w2
r

(6)

=
1

maas2
Hres(s) (7)

Since input and output positions are equal, the
modal contributions (r = 1 . . .∞) are all positive
(φ2(pa)), which results in a collocated transfer. In
multiplicative form it can be given as a pure mass
system multiplied by a residual transfer Hres(s)
with unity gain for low frequencies Eq. 7 and
phase between 0 and −180◦.



2.4 Integrated model

The mechanical model is used to express the
relation between the current ia and uEMF . By
definition, this can be regarded as the EMF-
impedance ZEMF (using Eq. 2). Using L∆v =
sXa(s), the EMF-impedance can be expressed as:

ZEMF =
UEMF (s)

Ia(s)
=

KBsXa(s)
1

KF
Fa(s)

=
KBKF

maas
Hres(s)

With this relation and Eq. 2, it is possible to
rewrite the feedback factor Eq. 8. In general, the
two poles are well separated (as in Fig. 7).

β(s)≈ Rss

Lcs2 + (Rs + Rc + Ro)s + KBKF

maa
Hres(s)

(8)

≈ β0s

(1 + τms)(1 + τes)
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Fig. 7. Amplitude plot of β(s).

2.5 Stability analysis

The feedback factor β(s) is crucial for the stability
of the amplifier loop G(s), since the open-loop is
given by A(s)β(s). Like other SISO control prob-
lem, this loop can be constructed by loopshaping
techniques. By analysis of the open-loop (see Fig.
8, it is clear that the influence of the mechanics
is a 90◦ phase lead at low frequencies. Therefore,
the resonance behavior Hres will not cause low-
frequent stability problems. Since it does not sig-
nificantly affect the behavior at higher frequencies
> 1

τe
(see Eq. 8), Hres is neglected in the remain-

der of this paper. The bandwidth is preferably
chosen as high as possible in order to approximate
the ideal gain, which seems to be easy because
of the intrinsically high gain A0 of the amplifier.
However, serious stability problems can occur: the
bandwidth of amplifier will exceed the τ1 and also
τe, so the open-loop will be around −180◦ at 0dB
(see Fig. 8). Furthermore, with the uncertainties
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Fig. 8. Open-loop A(s)β(s). Without compensa-
tion, the closed-loop can easily be unstable or
very badly damped.

of the actuator parameters it is hard to predict
the 0dB point exactly. The topology Fig. 6 should
be adapted to create a robustly stable closed-loop
without a badly damped resonance peak. Here
two approaches are presented which can also be
combined:

• Decreasing loop-gain. The loop-gain cannot
be changed by the shunt resistance, since
this determines the gain (transconductance)
of the amplifier Gt = G∞. By using local
voltage feedback around the original power
amplifier (pa in Fig. 9), the effective gain
A(s) of the amplifier is decreased. A voltage
invertor circuit can be used for this purpose
(e.g. see p.140 (Dostál, 1993)). The disadvan-
tage of this method is a lower bandwidth of
the closed-loop.

• Phase compensation. Creating phase-lead in
the loop can also solve our problem, with-
out decreasing the bandwidth drastically. A
modified feedback circuit (fb) as presented
in Fig. 9 can do this job. The new transfer of
the feedback factor can be approximated:

βnew(s) ≈ R3

R2 + R3

1 + R2Cs

1 + R2R3
R2+R3

Cs
βold(s)(9)

This circuit will automatically decrease the
low-frequent gain by R2

R2+R3
, which is also

inversely related to the ratio between the
pole and the zero location of the phase-lead.
Since this gain also affects the gain of the
amplifier G∞, an additional op-amp oa with
local feedback can be used to set G∞.

With these modification options is should be pos-
sible to create a well-damped transconductance
amplifier with reasonable bandwidth and an easily
adjustable gain Gt.

3. LIMITATIONS

In general the bandwidth of the amplifier is much
higher than the overal motion control loop. Fur-
thermore, we will assume that the frequency con-
tent of the designed feedforward signal Fff is also
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Fig. 9. Adapted transconductance feedback cir-

cuit.

limited within the bandwidth of the amplifier,
which means we can assume that the actuation
force is proportional to the input voltage:

Fa = KF ia = KF Gtui (10)

In other words, within the linear range of the
amplifier, given by their small signal behavior, no
limiting effect are expected. The large signal prop-
erties of an electric system represents its behavior
outside its linear range. In general these properties
are the result of internal signal limitations (i.e.
currents and voltages) in the amplifier. Unfortu-
nately, this behavior can directly limit the per-
formance of feedforward control. In high-precision
applications, setpoint design is often carried out
by addition of piecewise polynomial functions. In
this way, the reference signal x(t) can be limited
by limiting the maximum values for velocity v,
acceleration a, jerk j and even snap or djerk s. The
corresponding feedforward signal can directly be
related to these values (i.e. neglecting resonances):

Fff = maaa ⇔ ia =
maa

KF
a (11)

The three most important limitations and con-
sequences for feedforward design are listed below
(see also Fig. 10).

• Limited output current, ±imax. Often the
current is regulated by means of an internal
safety circuit. This is directly related to the
maximum actuation force, which limits the
maximum acceleration directly (using Eq. 1):

imax =
maa

KF
amax (12)

• Limited output-voltage swing, ±Vs. Since an
amplifier is fed by a limited voltage of the
power supply, the maximum swing of the
output voltage eo is limited. Using eo = Zs +
Zact +Zo (for symplicity, the original system
Fig. 6 is used), eo can be expressed in terms of
trajectory parameters velocity, acceleration
and jerk:

eo = (13)

(Ro + Rs + Rc)io + Lc
dio
dt

+
KF KB

maa

∫
iodt

=
maa

KF

(
(Ro + Rs + Rc)a + Lcj +

KF KB

maa
v
)

If the feedforward signal uses more voltage
swing than available, clipping occurs, which
distorts the output signal (see Fig. 11). Note
that the relation between eo and io equals β

Rs
,

so low- frequent and high-frequent content is
amplified in eo due to speed difference (and
corresponding uEMF ) and coil inductance
respectively.

• Limited slew-rate, S. Internally, the amplifier
has several stages with limited current ca-
pabilities. In general, the current limitation
in the input stage is easily reached, due to
a high differential input voltage ud. As as
result, the amplifier cannot follow and the
output will increase under a constant slew
deo

dt . The maximum output-voltage slope for
a given setpoint can be calculated:

deo

dt
= (14)

maa

KF

(
(Ro + Rs + Rc)j + Lcs +

KF KB

maa
a
)

Severe slew-rate requirements take place on
a very short time-base. Therefore, the effect
of a violation is hard to see in the current
signal io, and will have even less influence on
the mechanics. In general, the slew-rate will
not limit the trajectory design.
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Fig. 10. Block scheme of the amplifier and feed-
back circuit. The most important signal lim-
itations are depicted.

Although the parameter uncertainties listed in
Table 1 do influence the amplifier-loop dynamics,
the resulting effect on the actuator gain Eq. 1
is limited by the uncertainty of only KF due to
current steering. This uncertainty in actuator gain
is both temperature and position dependent. In
precision applications, feedforward can be com-
pensated (i.e. by using lookup-tables or temper-
ature measurements). At higher frequencies the
simple model of Eq. 2 is not valid any more. The
consequences are not further discussed but can
cause performance limitations (i.e. skin-effect and
Eddy-current losses).
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Fig. 11. Measurement of a corrupted feedforward
signal due to limiting Vs (clipping). Clearly
the current io cannot follow the input voltage
ui.

3.1 Adjustments

The most important limitations of the amplifier
are the limited voltage swing and the maximum
output current. For class of intended setpoints and
corresponding feedforward signals, the maximum
voltage swing of eo and maximum current io can
be calculated. If these values violate the Vs or
imax specifications, the actuation system has to
be adjusted. The can be done in various ways,
e.g.:

• selecting an amplifier with larger power capa-
bilities. In general this means higher output
current but also a higher voltage swing, so
we increase both imax and Vs. Disadvantage
of a larger amplifier is the increasing cost
and a higher noise level, which can make this
solution unwanted. Design of dedicated am-
plifiers is possible, but also very expensive.

• improving the quality of the magnet assem-
bly. This will increases KF , which directly
decreases the requirements on both imax and
Vs (Eq. 12 and Eq. 13).

• altering the number of windings of the coil.
The increase in windings n is given by the
ratio rw = nnew

nold
. Keeping the total volume

of the coil constant, we can express eo and io
in terms of rw and the original parameters:

inew
o =

iold
o

rw
, enew

o = (15)

maa

KF

(Ro + Rs + r2
wRc

rw
a + Lcj + rw

KF KB

maa
v
)

By decreasing the number of windings, the
requirement on Vs is exchanged by a higher
current demand and vise-versa. Thicker wires
have a better thermal conductivity than thin
wires, but the corresponding higher currents
also cause higher distortion levels in the
amplifier.
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Fig. 12. Influence on e0 and io for changing
number of turns of coil wiring for a given
trajectory x. For the dashed line, the number
of turns is halved, where the cross-section is
doubled.

4. CONCLUSIONS

This paper gives several guidelines to robustly
stabilize a tranconductance amplifier which loads
a Lorentz’ actuator. The critical limitations of the
amplifier can be expressed in terms of trajectory
parameters. Although it is an indirect calcula-
tion, since we assume the constant gain relation
ui = Gtio, the result will be useful in most cases.
Only for very fast setpoints, the input voltage will
significantly differ from the output current. Fur-
thermore, several options for adjusting existing
actuation systems are given.
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Dostál, Jǐŕı (1993). Operational Amplifiers. 2nd
ed.. Butterworth–Heinemann. Research In-
stitue for Mathematical Machines, Prague,
Czechoslovakia.

Lambrechts, Paul, Matthijs Boerlage and Maarten
Steinbuch (2005). Trajectory planning and
feedforward design for electromechanical mo-
tion systems. Control Engineering Practice
13, 145–157.

Magnetics Devision, Kimco (2002). Voice coil ac-
tuators, an application guide. Technical re-
port. BEI Technologies, Inc., USA.

Mills, P.G.L. and M.O.J. Hawksford (1989).
Transconductance power amplifier systems
for current-driven loudspeakers. Journal of
the Audio Engineering Society 37(10), 809–
822.

Nordholt, E.H. (1983). De-
sign of High-Performance Negative-Feedback
amplifiers. Elsevier. Amsterdam. Revision of
the author’s thesis.

Self, D. (2002). Audio Power Amplifier Design
Handbook. third ed.. Newnes. Oxforf.


