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Abstract. In container yard terminals, containers brought by trucks in the random order.
Containers have to be loaded into the ship in a certain order, since each container has its own
shipping destination and it cannot be rearranged after loading. Therefore, containers have to
be rearranged from the initial arrangement into the desired arrangement before shipping. In
the problem, the number of container-arrangements increases by the exponential rate with
increase of total count of containers, and the rearrangement process occupies large part of
total run time of material handling operation at the terminal. Moreover, conventional methods
require enormous time and cost to derive an admissible result for rearrangement process.
In this paper, a Q-Learning algorithm considering the desired position of containers for a
marshaling in the container yard terminal is proposed. In the proposed method, the learning
process consists of two parts: rearrangement plan assuring explicit transfer of container to the
desired positin, and, removal plan for preparing the rearrange operation. Using the proposed
method, the learning performance can be improved as compared to the conventional method.
In order to show effectiveness of the proposed method, computer simulations for several
examples are conducted. Copyright c

�
2005 IFAC
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1. INTRODUCTION

In recent years, operations for layout-rearrangement
of container stacks occupy a large part of the total run
time of shipping at container terminals. Since contain-
ers are moved by a transfer crane driven by human op-
erator and thus, the container operation is important
to reduce cost, run time, and environmental burden
of material handling systems(Siberholz et al., 1991).
Commonly, materials are packed into containers and
each container has its own shipping destination. Con-
tainers have to be loaded into a ship in a certain de-
sired order because they cannot be rearranged in the
ship. Thus, containers must be rearranged before load-

ing if the initial layout is different from the desired
layout. Containers carried in the terminal are stacked
randomly in a certain area called bay and a set of bays
are called yard area. When the number of containers
for shipping is large, the rearrangement operation is
complex and takes long time to achieve the desired
layout of containers. Therefore the rearrangement pro-
cess occupies a large part of the total run time of ship-
ping. The rearrangement process conducted within a
bay is called marshaling.

In the problem, the number of stacks in each bay
is predetermined and the maximum number of con-
tainers in a stack is limited. Containers are moved
by a transfer crane and the destination stack for the



container in a bay is selected from the stacks be-
ing in the same bay. In this case, a long series of
movements of containers is often required to achieve
a desired layout, and results (the number of move-
ments of container) that are derived from similar lay-
outs can be quite different. Problems of this this type
have been solved by using techniques of optimiza-
tion, such as genetic algorithm (GA) and multi agent
method(Koza, 1992; Minagawa and Kakazu, 1997).
Although these methods yield some solutions, com-
putational complexities are large, or, methods for im-
proving the quality of solutions are not mentioned.

The Q-learning(Watkins and Dayan, 1992; Watkins,
1989) is known to be effective for learning under un-
known environment. In the Q-learning for generating
marshaling plan, all the estimates of evaluation-values
for pairs of the layout and movement of containers are
calculated. These values are called “Q-value” and Q-
table is a look-up table that stores Q-values. The in-
put of the Q-table is the plant state and the output is
a Q-value corresponding to the input. A movement is
selected with a certain probability that is calculated by
using the magnitude of Q-values. Then, the Q-value
corresponding to the selected movement is updated
based on the result of the movement. The optimal pat-
tern of container movements can be obtained by se-
lecting the movement that has the largest Q-value at
each state-movement pair, when Q-values reflect the
number of container movements to achieve the desired
layout. However, conventional Q-table has to store
evaluation-values for all the state-movement pairs.
Therefore, the conventional reinforcement learning
method, Q-learning, has great difficulties for solving
the marshaling problem, due to its huge number of
learning iterations and states required to obtain admis-
sible operation of containers(Baum, 1999). Recently, a
Q-learning method that can generate marshaling plan
has been proposed(Motoyama et al., 2001). Although,
these methods were effective several cases, the desired
layout was not achievable for every trial so that the
learning performances in early stages of learning can
be degraded.

In this paper, a new reinforcement learning system to
generate a marshaling plan is proposed. The learn-
ing process in the proposed method is consisted of
two stages: (1) determination of rearrangement order,
(2) selection of destination for removal containers.
Learning algorithms in these stages are independent
to each other and Q-values in one stage are referred
from the other stage. That is, Q-values are discounted
according to the number of container movement and
Q-table for rearrangement is constructed by using Q-
values for movements of container, so that Q-values
reflect the total number of container movements re-
quired to obtain a desired layout. Moreover, in the
end of stage (1), selected container is rearranged into
the desired position so that every trial can achieve the
desired layout. Thus, the learning performance in the
early stages of learning can be improved. Also, in the

addressed problem, the number of layout-movement
pairs referred to achieve the desired layout is much
smaller than the total number of layout-movement
pairs. Thus, only the layout-movement pairs referred
in learning processes are stored in Q-tables that are
constructed dynamically(Hirashima et al., 1999) by
using the binary tree. Finally, effectiveness of the pro-
posed method is shown by computer simulations for
several cases.

2. PROBLEM DESCRIPTION
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Fig. 1. Container terminal

Fig.1 shows an example of container yard terminal.
The terminal consists of containers, yard areas, yard
transfer cranes, auto-guided vehicles, and port crane.
Containers are carried by trucks and each container
is stacked in a corresponding area called bay and a
set of bays constitutes a yard area. Each bay has � y
stacks that � y containers can be laden, the number of
containers in a bay is

�
, and the number of bays de-

pends on the number of containers. Each container is
recognized by an unique name c �����	��
��������� ��� . A
position of each container is discriminated by using
discrete position numbers, 
������������ y ��� y. Then, the
position of the container c � is described by ������
��
��� � ��
���� � ��� y ��� y

�
, and the state of a bay

is determined by the vector,  ��"! �$#%�������&���('%) . Defin-
ing * as the time step, the container to be rearranged
at * in the stage (1) is +,#��-* � and is selected from can-
didates c .0/213����#4�5
������������ y

�
, desired container to be

placed at the bottom position that has undesired con-
tainer in each stack. In the stage (2), the container to
be rearranged at * is +�6�-* � and is selected from contain-
ers c . /879��� 6 �5
��;: � being on the + # ��* � and its desired-
position. Then, in the stage (2), + 6 �-* � is removed to
one of the other stacks in the same bay, and the desti-
nation stack <=��* � at time * is selected from the candi-
dates <�>?�A@B��
������������ y C : � . + # �-* � is rearranged to



its desired position after all the c . 6;/����9� 
�0: � are re-
moved. Thus, a state transition of the bay is described
as follows:

 ��� # � ��� �- � �;+�#��-* ��� (stage (1))� �- � �;+ 6�-* � ��<=��* � � (stage (2))
(1)

where
� ��� � denotes that removal is processed and  ��� #

is the state determined only by +%#��-* � �;+ 6�-* � and <=��* � at
the previous state  � . Therefore, the marshaling plan
can be treated as the Markov Decision Process.

Additional assumptions are listed below:

(1) The bay is 2-dimensional.
(2) Each container has the same size.
(3) The goal position of the target container must be

located where all containers under the target con-
tainer are placed at their own goal positions.

(4)
� � � y � y C : � y � 


The maximum number of containers that must re-
moved before rearrangement of + # ��* � is :�� y C 
 be-
cause the height of each stack is limited to � y. Thus,
assumption (4) assures the existence of space for re-
moving all the +�6�-* � , and +,#���* � can be placed at the
desired position from any state  � .
The objective of the problem is to find the best series
of movements which transfers every container from
an initial position to the goal position. The goal state
is generated from the shipping order that is predeter-
mined according to destinations of containers. A series
of movements that leads a initial state into the goal
state is defined as an episode. The best episode is the
series of movements having the smallest number of
movements of containers to achieve the goal state.

3. REINFORCEMENT LEARNING FOR
MARSHALING PLAN

3.1 Update rule of Q-values

The evaluation value for the selection of c .0/���� �

����������� y

�
and <�> �A@ � 
��������� � y C : � at the state  is

called Q-value, and a set of Q-values is called Q-table.
At the lth episode, the Q-value for selecting c . / 1 is
defined as � # �
	��  9� <�> � , the Q-value for selecting c . /87
is defined as � 6 �
	��; � c . / 1 � c . /87 � and the Q-value for
selecting <�> is defined as �����	��  3� c . / 1 � c . / 7 ��<�> � . The
initial value for both � #%��� 6 ��� � is assumed to be 0.

In this method, a large amount of memory space is
required to store all the Q-values referred in every
episode. In order to reduce the required memory size,
the length of episode that corresponding Q-values are
stored should be limited, since long episode often in-
cludes ineffective movements of container. In the fol-
lowing, update rule of ��� is described. When a series
of � movements of container achieves the goal state
 �� from an initial state  �� , all the referred Q-values
from  �� to  �� are updated. Then, defining � as the to-
tal counts of container-movements for the correspond-

ing episode, ��� ��� as the smallest value of � found in
the past episodes, and � as the parameter determining
the threshold, � � is updated when ������� ��� � � ������ �

is satisfied by the following equation:� � �	��  � � +,#���* � � + 6���* � ��<=��* ��� �
��
 C � � � � �	 C 
�; � �;+�#��-* � �;+ 6�-* � ��<=��* � ��!� ! " �$# ��� #0)

# � �&%' (*)!+-,/.. / 1 � # �	��  � � c .0/21 � � stage ��
 ���)!+-,/.. /87 � 6��	��  � � +�# ��* � � c .0/ 7 � � stage � : ���

(2)
where ) denotes the discount factor and � is the learn-
ing rate. Reward " is given only when the desired lay-
out has been achieved. � � �0� is assumed to be infinity
at the initial state, and updated when ���1� � �0� by the
following equation: ���2� � �0� .
In the selection of +�6��* � , the evaluation value � � �	��; 3�
+�#��-* � � +�6��-* � ��< > � can be referred for all the < > � @ �

?������� y C : � , and the state  does not change. Thus,
the maximum value of � � �
	��  3� +�# ��* � �;+ 6 ��* � � < > � is
copied to � # �	��; 9� + �-* ��� , that is,� 6�
	��  3�;+�#��-* � � +�6��-* ��� �+3,4.> � � �
	��; �;+�#��-* � �;+ 6��-* � � < > �65 (3)

In the selection of +,#���* � , the evaluation value � # �	��; 3�
+�#��-* ��� is updated by the following equations:� #��	��  � � +,#���* � � �

%' ( +-,/..0/A1 � # �	��  � � c .0/21 � � " � stage ��
 ���+-,/.. /87 � 6��	��  � � +�# ��* � � c .0/ 7 � � stage � : ���
(4)

In the proposed method, the ” 7 -greedy” is used to
select actions. In the ” 7 -greedy” method, +%#��-* � �;+ 6�-* �
and a movement that have the largest � #��
	��  3�;+�#��-* ��� �� 6�
	��  3� +�# ��* � �;+ 6 ��* � and � 6�
	��; 9� +�# ��* � �;+ 6�-* � � < > � are
selected with probability 
 C 7%� � �87��"
 ), and with
probability 7 , a container and a movement are selected
randomly.

3.2 Learning algorithm

By using the update rule, restricted movements and
goal states explained above, the learning process is de-
scribed as follows:

(1) Count the number of containers being in the goal
positions and store it as �

(2) If � � �
, go to (10)

(3) Select +,#���* � to be rearranged
(4) Store �  9� +,#��-* ���
(5) Select +�6��* � to be removed
(6) Store �  9� +,#��-* � � +�6��-* ���
(7) Select destination position < > for + 6���* �
(8) Store �  9� + # �-* � � + 6 �-* � ��<�> �
(9) Remove + 6 �-* � and go to (5) if another + 6 �-* � ex-

ists, otherwise go to (1)
(10) Update all the Q-values referred from the initial

state to the goal state according to eqs. (2), (3)
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Fig. 2. Flowchart of the learning algorithm

A flow chart of the learning algorithm is depicted in
Figure 2.

3.3 Data structure of Q-table

In the Q-learning method, a larger number of states
result in the larger number of Q-values that should be
updated. In this case, the number of learning iterations
becomes larger. Moreover, the larger number of Q-
values requires the lager memory size in order to store
all the evaluation-values for pairs of the plant state and
movement. In realistic problems the number of state-
movement pairs is large, so that huge memory size is
required in order to store Q-values for all the states.
Therefore, in the proposed method, only Q-values cor-
responding states that are referred in learning process
are stored. Binary trees for storing Q-values are con-
structed dynamically during the course of the learning.

The binary description of �����-� � 
���������� ��� is de-
fined as  ��4�"! � # ������! ��# �$! � > � � ��
 @B� 
�����������% � ,
where % is the order of binary description of ��� . Then,
the binary description of  can be described by  B�

 # ������ �' of order � � � 
 � % . That is, a binary tree of
depth � � � 
 � % can represent  . At each node of the
binary tree, 0 is assigned to left descendant of the node
and 1 is assigned to right descendant, and ! � > denotes
the descendant at the node of depth %(��� C 
 � � @ . Each
leaf of the tree stores state and corresponding Q-value.
Given an input to the Q-table, the leaf corresponding
to the input is specified by a search using  . When the
input corresponds the value stored by the leaf, Q-table
outputs the Q-value stored by the leaf. Otherwise, Q-
table outputs 0. Fig.3 depicts a Q-table constructed by
binary tree in the case of

� ��� y ��� y ��:�� 	 �

��% �'& . In the figure, inputs  )( � ! 
��&�) �  )* �
! + �,+ ) are given to the Q-table. In the former case, left,
left, right descendants are specified, the leaf stores the
same state as the input, and outputs � # . While, in the
latter case, right, left descendants are specified, the
state that leaf has is different from the input, and thus
0 is output.
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Initially, the tree has only root that has pointer to a leaf
having data of state and Q-value. When the referred
state has an updated Q-value, 2 consecutive memory
units for storing pointer to leafs storing data of state
and Q-value are newly allocated. The Q-value and cor-
responding input are stored in another memory unit
that is newly allocated for storing data according to! � > . When the next updated Q-value appears, the in-
put and the value pointed by the leaf are compared.
When they have the same value, the stored Q-value
is update. Otherwise 3 memory units are newly allo-
cated in the memory space, one for data and others
for pointers. The algorithm for Q-table construction is



described below, and Fig.4 is the flowchart of the al-
gorithm.

(1) Calculate  from  and initialize � � @ � 

(2) If a memory unit corresponding to ! � > is a leaf

then go to (3), and if it is node then go to (4)
(3) update �0� @ by� @�� @ � 
������ � �A@ � % � �

@�� 
�� ��� � � 
 �A@ � % � � (5)

and go to (2).
(4) Conduct eq.(5) again, allocate 2 nodes for ex-

panding a tree, and 1 leaf for storing state and
Q-value. Then, copy data from original leaf into
corresponding leaf, and store the pointers indi-
cating a new leaf and nodes into original nodes.

(5) If ! � > has the same number as the state stored in
the leaf, go to (4). Otherwise store the new input
and Q-value into the corresponding leaf.
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Fig. 4. Flowchart of the Q-table construction

4. SIMULATIONS

Computer simulations are conducted for 2 cases, and
learning performances are compared for following
two methods:

(A) proposed method,
(B) a learning method using eqs. (2),(3) as the update

rule, which has no selection of the desired position
of + # �-* � (Motoyama et al., 2001).

In the method (B), although the stage (2) has the same
process as in the method (A), the container to be re-
arranged, +,#��-* � , is simply selected from containers be-
ing on top of stacks. The learning process used in the
method (B) is as follows:

(1) The number of containers being on the desired
positions is defined as

�
B and count

�
B

(2) If
�
B � �

, go to (6) else go to (3),
(3) Select + # ��* � by using 7 -greedy method,
(4) Select a destination of + # �-* � from the top of

stacks by using 7 -greedy method,
(5) Store the state and go to (1),
(6) Update all the Q-values referred in the episode

by eqs. (2),(3).

Since the method (B) does not search explicitly the de-
sired position for each container, each epsode is not as-
sured to achieve the desired layout in the early stages
of learning. The flowchart of the learning process in
the method (B) is described in Figure 5.
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In both methods,
� � 
������ y �"� y ��� that is typ-

ical marshaling environment in real container termi-
nals. Containers are assumed to be loaded in a ship in
descendant order from c #�� to c # . Figure 6 shows the
desired layout for the two cases, and figure 7 shows
the initial layout for each case. Other parameters are
put as � � � 5 ��� ) � � 5 ��� " � 
 5 � � 7 � � 5 ����� � 
�� .
Results are shown in Figs. 8,9. In the figures, horizon-
tal axis shows the number of trials, and vertical axis
shows the minimum number of movements of con-
tainers found in the past trials. Each result is aver-
aged over 10 independent simulations. In both cases
the method (A) obtain better solutions with smaller
number of trials as compared to the method (B) in
the early stages of learning, because the method (A)
can achieve the desired layout in every trial, whereas
the method (B) cannot. Moreover, at 10000th trail the
number of movements of containers in the method (A)
is coequal or better as compared to that in the method
(B). Therefor the learning performance of the method



(A) has been improved. Although method (B) can
occasionally generate comparative plan with method
(A), the method (B) may generate the marshaling plan
that cannot achieve the desired layout. This means that
method (B) requires additional algorithm for checking
achievability of the goal state.
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The run time of a simulation was about 4 minutes
by using the computer that have Pentium III 850MHz
CPU, and the memory size required for Q-tables was
about 5MBytes.
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5. CONCLUSIONS

A new reinforcement learning system for marshaling
plan at container terminals has been proposed. By us-

ing dynamic binary tree as a Q-table, the learning al-
gorithm can be implemented for marshaling plans that
have huge number of states.

In simulations, the proposed method could find solu-
tions that had smaller number of movements of con-
tainers as compared to conventional methods. More-
over, since the proposed method assures to achieve the
desired layout in each trials, the method can generate
solutions with the smaller number of container move-
ments as compared to the conventional method.
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