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Abstract: A generalized Persidskii-like theorem is dediaend shown to be applicable
to the stability analysis of a class of gradient dynamicatayms with discontinuous
right hand sides. These dynamical systems arise from tlepete descent technique
applied to a variety of problems suitably formulated as trairsed minimization prob-
lems. The problems susceptible to this approach includstiprogramming problems
and specifically the k-winners-take-all problem, the peablof solving underdetermined
linear systems arising in least squares support vector imeghand quadratic program-
ming problems associated to the support vector machinevapprto classification. The
advantage of the proposed analysis is the derivation oflsimgnvergence conditions.
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1. INTRODUCTION Persidskii type diagonal Liapunov function leads to
conditions (for the linear programming problem) that
Gradient dynamical systems to solve linear program- are more tractable than those obtained by Cheng
ming problems were first proposed by Pyne and sub-al. (1999). The class of gradient systems with dis-
sequently analyzed in several papers and, notably, incontinuous right hand sides considered in this paper
the book Utkin (1992). An excellent account of this can be regarded as neural networks with discontinuous
work can be found in Chongt al. (1999), which activation functions (Cichocki and Unbehauen, 1993).
contains the first complete and rigorous analysis of
a particular class of gradient dynamical systems with
discontinuous right hand sides. In fact, we will use the
latter, but will develop an alternative analysis that is
applicable to a larger class of problems, starting from a
Liapunov function first proposed by Persidskii (1969)
and further developed in Hset al. (2000) as well
as Kaszkurewicz and Bhaya (2000). This so called

The notation is standard. We denote column vectors
by boldface lowercase letters, like c. Scalars are
represented by lowercase italic letters, liker Greek
letters, like~y, while sets are represented by capital
Greek letters such ad. Matrices are denoted by
uppercase boldface letters, liRe Vector functions are
denoted byf(x) which, unless otherwise specified, are
diagonal type functions, i.e.,

T
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all are discontinuous at the origin and these functions Theorem 1. Consider the Persidskii-type system (1).

will usually occur as components of diagonal func-

If there exist a symmetric positive semi-definite matrix

tions, which are denoted using the same abbreviationsg 5nq a positive definite block diagonal matfixsuch

0,ifa>0 1,ifa>0
hsgra) :== ¢ € [-1,0], ifa=0 uhsgria):= < €[0,1],ifa=0
—1,ifa<0 0,ifa<0
—1,ifz <0
sgnz) = ¢ € [-1,1],ifa=0
1, if z > 0.

2. PERSIDSKII TYPE RESULTS FOR
NONSMOOTH DYNAMICAL SYSTEMS

1_ _ 2
Persidskii systems and the corresponding diagonal Vi(x) = §XTD11X+ Z dz('i)

type functions were first presented in (Persidskii,
1969), where absolute stability was proved for such
systems by means of diagonal type Lyapunov func-

tions. Kaszkurewicz and Bhaya (2000) studied such

systems in further detail, while Hsa al. (2000) an-
alyzed a class of Persidskii systems with discontin-
uous right hand side. The latter result is generalize
in this section. Consider the following Persidskii-type
system:

x(t) = —Af(x(t)), @)

wherex = (x7,x1)T, x € RP, x € RY, f(x) =
=T, g"x)?, A € R, n = p+ q and the
vector functiong : R? — R? satisfies the following
assumptions:

a) g(x) is a piecewise continuous diagonal type
function,

g(f{) = (gl(i‘l)a""gq(i‘q))T’ (2)

c) g is continuous almost everywhere (i.e., the
points at which it is discontinuous form a seft
of Lebesgue measure zero).

Furthermore, when thgs are chosen as hsgn, uhsgn,
sgn functions, the sey/ is described by the intersec-
tion of surface$),{x : g:(Z;) = 0}, which is referred

to as asurface of discontinuity. Since system (1) has
discontinuous righthand side, its solutions must be
considered in the sense of Filippov (1988). According
to Filippov’s theory, when trajectories are not con-
fined to the surface of discontinuity, the solutions are

considered in the usual sense, otherwise the solutions

of (1) are the solutions of the following differential
inclusion:

x(t) € G(x(1)), ®)

wherex is absolutely continuous, defined almost ev-
erywhere within an interval, and the g&ts described
as the convex hull containing all the limiting values of
g(x), whenx — x’ € M. We define the set’ by
means of the equivalent control method (Utkin, 1992).

The following is the main result of this paper.

that

_ D11 0
D_< 0 D22>’

where the blockDq; is symmetric positive-definite
and D,, is positive diagonal, such thaf = SD,
then the trajectories of (1) converge to the invariant
setAd = {x: f(x) e N(A)}.

Proof. (sketch only) Let the following nonsmooth
candidate Liapunov function of Lure-Persidskii type,
associated to the Persidskii-type system (1) be:

/OT gi(T)dT—

p+q

i=p+1
1 ptq @) &7
*xT ok
§X D11X + ‘Zkldii /O gl(’T)dT 5
i=p

(4)

dwherex*T belongs to the invariant sel := {x :

f(x) € N(A)}, dgf) are elements of a positive di-
agonal matrixDss and matricesD,; and Dy, are
the diagonal elements of a block diagonal maibix
If A = SD, the time derivative of (4) along the
trajectories of (1),

V =vVTx = —f7(x) DSDf(x). (5)

Notice that if S is positive semi-definite, thel is
negative semi-definite. Consider the Lure-Persidskii
function (4) and its time derivative (5). Notice that
V = 0iff Af(x) = 0 and, consequentlyk = 0 for
f(x) € N(A). Thus,A = {x: f(x) € N(A)}isan
invariant set. Since, by assumptioh,= SD, (5) can

be written as

V = —f7(x)DSDf(x). (6)

Given the fact thaf (x) is discontinuous in a set/,
we analyzé/ under three assumptions:

i) x(t) ¢ M, i.e., the trajectories of system (1) are
not confined to the surface of discontinuity. In
this case, the solutions of (1) exist in the usual
sense, thus sincg is positive semi-definite, it is
immediate thal/ (x) < 0;
x(t) € M, fort € [to,ts], i.e., the trajectories
of system (1) are confined to the surface of
discontinuity during a certain time interval. In
this case, the vectoiSDf(x) are described by
some vectoe such thatt = —e € G(x) and we
haveV = —eTe < 0.
iif) Components ofx;(t), for somei are at points
of discontinuity of the corresponding, while
the remainingx;(t), j # ¢ are not at points of
discontinuity of the corresponding;: this case
can be treated in a way similar to items i) and ii)
above.

i)



Consequently, from items i), ii), iii) and using the in the sense of Filippov (Filippov, 1988), and the set
nonsmooth version of LaSalle’s theorem (Shevitz and A is referred to as aurface of discontinuity. If the
Paden, 1994), the trajectories of (1) converge to thetrajectories of (11) are confined t, this motion is
invariant setd. Theorem 1 is an extension of the result said to be aliding motion or, equivalently, the system

in Hsuet al. (2000) and it provides a general conver- is said to be irsliding mode. This is equivalent to say-
gence result for Persidskii systems with discontinuous ing that the motion occurs in the hyperplane tangent
righthand sides. An extension of theorem 1 is also to the surface of discontinuity. Further details about
needed in applications to linear programming for the sliding modes can be found in (Utkin, 1992; Edwards
following modification of the dynamical system (1) and Spurgeon, 1998).

x(t) = —Af(x(t)) — ¢, ()

wherec is a constant vector, and the other symbols are 3.1 Convergence analysis
as defined above. The extension of theorem 1 appears
in section 5.0.1. Convergence analysis is performed using a Persidskii
form of the gradient system (11) in conjunction with
the corresponding candidate diagonal type Lyapunov
3. SOLVING LINEAR SYSTEMS function. The Persidskii form of (11) is obtained by

premultiplying (11) by the matrixA. Observe that
This section considers the problem of finding a solu- sincer = Ax, from (11) we get:
tion to an underdetermined system of algebraic linear = —AM ATsgn(r). (12)

equations of the form:

Ax = b, ®) The following proposition holds.
where A € R™*" has full row rankm < n, x € Proposition 1. The Persidskii system (12) is equiva-
R™ andb € R™. The least absolute deviation or lent to the original gradient system (11), in the sense
L, approach is to solve the following unconstrained thatr = 0 iff x = 0.
optimization problem:

Minimize E(x) = ||r(x)]]1, x € R", 9) Proposition 1, which has a simple proof omitted here,
wherer(x) := Ax — b, and| - ||, denotes the 1-norm. iS necessary since it ensures that the convergence re-

A solution of the optimization problem (9) is regarded Sults derived for the Persidskii system (12) also hold
as a solution of the system of linear equations (8) in the 0" the original gradient system (11). Since system
L, sense, and is well known to have good robustness(12) has a discontinuous righthand side, we choose
properties in regard to outliers and bad data (Portnoy ©0llowing nonsmooth candidate diagonal type Lya-
and Koenker, 1997), as opposed to the popular leasfPUnoV function (Hset al., 2000):

squares solution. mo e

quarest.) v =Y / sgr(r) dr. (13)
i=170

Observe that i}/ (r) > 0forr # 0;ii) V(r) = 0 if

and only ifr = 0. The time derivative o along the
trajectories of (12) is given by = VV 7t i.e.,

Letr; : R™ — R be the components of vecter The
setA := {x : r(x) = 0} is defined as:

A=A A= {x:ri(x) =0}, (10)
i=1 .

The minimum of the energy functio® in (9) is V(r) = —sgn' (r) AM A'sgn(r).  (14)
r = 0, consequently, a solution of problem (9) is a Notice that sinceA has full row rank andMI is posi-
vectorx* € R” such thatx* € A. Notice thatF tive definite, thenA M A” is also positive definite.
is convex inr, thus its unique minimizer is the zero ConsequentlyV = 0 if and only if sgrnr) = 0
vectorr* = 0, and it is nondifferentiable at = 0. implying & = 0 and, from Proposition x = 0 and
The optimization problem (9) is solved in the present we have:
paper by mapping it into a gradient system of the form:
x = —-MVE(x), whereM = diag (u), is a positive ~ Theorem 2. The trajectories of system (11) converge,
diagonal matrix withy, € R™. In the context of neural  from any initial conditions, to the solution set of the
networks, the objective functioR is referred to as a  system of linear equations (8) in finite time and remain
computational energy function, while M is referredto  in this set thereafter. Moreover, the convergence time
as alearning matrix, and used to improve convergence t; satisfy the boundt; < V(ro)/Amin(AMAT),
speed (Cichocki and Unbehauen, 1993). Consider thewherer := r(xg).
following gradient system associated to problem (9):

x = —MATsgnr). (11)

Notice that the functiorE(x) in (9) is nondifferen-
tiable atA; = 0, leading to the discontinuous right- Given two classesA and B, the classical pattern
hand side of (11).The solutions of (11) are considered recognition problem of finding the best surface that

4. SUPPORT VECTOR MACHINES (SVM)



separates the elements of two given classes can be ) 1 h
described as follows. Consider the following training ~ min &s(u,e,¢) = Juwu+ g D e 17)
pairs: i=1

sty (ulg(z) +c)=1—¢;,i=1,...,m

(ylazl)w"?(yﬂuzm)u Yi € {_171}7 (15) . . i
The dual problem of (17) is given by the following
where the vectorg; belong to the input space and system of linear equations, also known as a Karush-
the scalarg); define the position of the vectogs in Kuhn-Tucker (KKT) linear system (Suykere al.,
relation to the surface that separates the classes, i.e., i2002):
y; = +1 the vectorz; is located above the separating T
surface and if;; = —1, this vector is located below [0 y ] [C} _ {0} (18)
the separating surface. If given a set of pairs as in yiQ+boI] |« 1)’
(1.5)’ a single r?yperr]plane cfan .be chc:ien' SUC.Z thaR/\/here Q is a symmetric matrix given by;; =
Z)zbzéii:earill, t ;r;;lee set of pointgz; i, is said ) k(. 2) andK is defined by the kerndt (z, z,) —
ysep - ¢™ (z) ¢(z;). In the LS-SVM model, the problem of
Consider two classe4$ andB, not necessarily linearly  determining the best separating surface for classes
separable, identified agy = +1 andyp = —1, A and B is reduced to solving the system of linear
respectively. The problem of finding the best hyper- equations (18), which has a full rank coefficient ma-
planeIl := {u : u”z + ¢ = 0} that separates trix if b=' # —\;(Q), Vi. Thus by Theorem 2, the
the elements of classe$ and B is modeled by the trajectories of the gradient system (11), withx and
following quadratic optimization problem (Cristianini b defined as in (18), converge in finite time to the

and Shawe-Taylor, 2000): solution of (17).
1 N Numerical examples and further details can be found
min&(u, e, ¢) = 5uTu +by el (16)  in Ferreiraet al. (2005).
k=1
sty(ulz;+¢)>1—e;e;,>0, i=1,...,m.

wherep is a positive integemi, z; € R™ ande;, €
R. The quantityy;(u’z + ¢) is defined as the mar-

_?_'rr]' Or: the ir:pueté V;:ith relspect tobtlhe h)i%erp_larlé. h There are several formulations for the nonlinear sepa-
e hyperplandl that solves problem (16) gives the ration problem (Cristianini and Shawe-Taylor, 2000).

S?ft margin hyperplane, in tlhesf;rk‘seftha;tge nTmberThe »-SVM formulation (Schlkopf et al., 2000) fits
of training errors is minimal ( Opt and smola, - 44 the general formulation of Theorem 1 and is mod-

20(.)2; Cristianin.i and Shawe—Taonr, 2000)..The slack eled by the following constrained optimization prob-
variablese; are introduced in order to provide toler-

4.2 v-SVC for nonlinear separation

: s lem:
ance to misclassifications.
. “pe . . X 1 1 m
For nonlinear classification, a feature functignthat min7(w,&,m) = = ||w||> —vn + — Z e; (19)
maps the input space into a higher dimensional space 2 mi4

is introduced. In this case, the constraints of problem s.t.y;(w” ¢(z;) +¢) > 1 — &, andn > 0, e; > 0,

(16) becomey;(uT¢(z;) +¢c) > 1 —e;, i = _ _ _ _
1,...,m. The traditional approach is to solve the dual Where ¢ is a feature map function, which provides
of (16), since in this case, instead of the functign the classifier with the ability of performing nonlinear
another class of functions, known as kernel functions discrimination of patterns. The additional parameter
and defined ag (z,z;) = ¢7(z)¢(z;) is used, with ¥ controls the number of margin errors and support
the advantage that it is not necessary to know thevectors (Scblkopf and Smola, 2002). The dual of the
feature functiony. The feature function is defined ~ constrained optimization problem (19) is as follows:
implicitly by the kernel which is assumed to satisfy

the Mercer conditions (Séftkopf and Smola, 2002; min¢&, (o) = %GTQG (20)
Cristianini and Shawe-Taylor, 2000). styla =0, 1)
a—m-'1,, <0, and (22)
Ba—-vh>0,,,1. (23)
41 LSSVM where the column vecto8,,,1,, € R™, 0,,11 €

R™ 1 o € R™, qi; = yiy;jo(z:)" ¢(z;) and the
The LS-SVM model is a modification of the original matrix B := (1,, I,,) and the column vectd” :=
SVM model (16), in which the inequality constraints (1 0,,). Notice that the objective functiof, is ho-
are replaced by equality constraints. The LS-SVM is mogeneously quadratic inc and the constraints of
modeled by the following constrained optimization the quadratic programming problem are linear. Let
problem (Suykenst al., 2002): r := Ba—vh,z = y'aandv := a — m™'1.



Applying the exact penalty function method to (20)
we obtain:

. 1 -
min E(a) = 5aTQoz + pla| =) min(0,r;)+
=1

B> max(0,v;). (24)
i=1

The gradient systerd = —V E(«) associated to the

unconstrained optimization problem (24) is given by:

& = —Qa—pysgn(z) —yBThsgr(r) — fuhsgrv),
(25)

4.2.1. Convergence analysis:  Define the functiorf

and the vecto# as:
£(0) := (o, sgn(x), hsgrf (r), uhsgrf (v))T (26)
(27)

An augmented dynamical system in the vediatan
be written as the Persidskii system:

6 = —Af(09),
where the matriA is:

0 :=(a,z,r,v).

(28)

Qpy BT 1
y'Q py"y vy"BT py”
BQ pBy yBB” §B

Qpy BT pI

Matrix A can be factored into the forlA = SD,
where:

A =

I|ly BT 1 Qoo o
s— | Y |YYyy By D | 9rp00
: B|By BBT B | 0/0+I 0
Iy BT I 0jo 0 g1

(29)

Theorem 3. If Q is positive definite then, for any posi-
tive constantg, v andg, the trajectories of the system
(25) converge to the solution of the dual quadratic
programming problem (20).

The proof of this theorem follows directly from Theo-

above can be relaxed to the following LP problem with
bounded variables:

rnachx (31)
st1Tx =k, xe€[0,1]"
wherec = [c1,...,c,]T, 1 = [1,...,1]T € R,

k < n € Nis a nonnegative integer ande R"*!,
The following proposition states that the integer pro-
gramming problem (30) and its relaxed version (31)
have the same solutiot*.

Proposition 2. Consider the LP problem (31), and let
the components of vectat be distinct. Then, the
solution of the LP problem (31) is unigue and presents
k components equal to one, which, correspondingly,
multiply the & largest components of vectar in

the objective functiore, while then — k& remaining
components are equal to zero.

Applying the penalty function method, we have:

min E(x,v,p) = —cx—
n n
¥ Zmin(O,xj) - ij' +p1Tx — K|
j=1 i=1
(32)
where, for each
x+ _ Tj — 1 if Tj > 1

Consider the gradient systesa = —VE(x), that

minimizesE, which is given by:

% = ¢ — y[hsgn(x) + uhsgrix)] — p1sgn17x — k)
(33)

5.0.1. Convergence results Let X' be the solution
set of the LP problem (31). Convergence to thexet
is defined, after (Utkin, 1992, pg. 229), as follows.

lim min [|x(t) — x| =0, x" € &,

t—oo X
Convergence of the system described by equation (33)
occurs in two steps, commonly known as tkaching

rem 1 observing that the positive definiteness of matrix Phase and thesliding mode, in the literature on vari-
Q, assumed in theorem 3, is achieved by choosing@ble structure systems (Utkin, 1992). Our analysis is,

positive-definite kernels in the implementations. Ob-

accordingly, also in two steps. First, we derive suffi-

serve also that the convergence of the gradient systenfient conditions for the reaching phase, i.e., to ensure

does not depend on the parameter

5. LINEAR PROGRAMMING SOLUTION OF
THE KWTA PROBLEM

Urahama and Nagao (1995) formulated the KWTA
problem as the following integer programming prob-

lem:

max CTX

st1Tx =k, x €{0,1}",
converted it into a nonlinear programming problem,

and solved it by minimizing an associated Lagrangian
function. In fact, the integer programming problem

(30)

convergence to the feasible set of problem (31), which
is given by the intersection

Q:=IINT, (34)

wherell := {x:17x —k =0} andl" := {x : z; €
[0,1], for eachj}. In common with methods that use
discontinuous switching functions (hsgn, uhsgn, sgn),
the dynamical system (33) has the pleasant property
of a finite time reaching phase (31), which means that
there existg < oo such thatniny ||x(t) — x*|| — 0,

x* € X, ast — t (Chonget al., 1999).

Premultiplying (33) by the row vectdr” and noticing
that? = 17x we get,

7 =1Tc —y1Th(x) — p1T1sgn(r). (35)



Writing equations (33) and (35) in vector notation, we

get
x| _|[c| [In1 v I, Opx1 h(x)
| [1Tc 17171 | | 01n p sgn(r)
(36)
Defining
| v In Onxa o I, 1
D= |:01><np :|7 S = |:1T 1T1:|7 (37)

using the standard choice of the following Persidskii
diagonal type “sum of integral-of-nonlinearities” Lya-
punov function:

Ve =1 / " h(r)dr + p / " sgr(r)dr,

(38)
and recalling that in the reaching phase¢ , i.e.,
h(x) # 0or17x — k # 0, it is possible to derive the
following lemma.

Lemma 1. Consider the system of ordinary differen-
tial equations (33). Provided thatand p satisfy the
following inequality

min(y*,np®,n(y = p)*) > llefi(v + ) (39)
then, for any initial condition, the trajectories reach the

set(?, defined in (34), in finite time and remain in this
set thereafter.

Lemma 1, the proof of which is omitted but available

discontinuous right hand sides. This is, in the case of
the KWTA and SVM problems, a considerable simpli-
fication of general LP results proposed earlier in the

- literature (Chonget al., 1999). Another area of poten-

tial applications is in the congestion control of com-
munication networks: a gradient search algorithm for
a non-differentiable objective function is mentioned in
Wu et al. (2001, p.1276), and a sliding mode approach
is used by Lagoat al. (2004) in this problem.
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