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Abstract: A generalized Persidskii-like theorem is derived and shown to be applicable
to the stability analysis of a class of gradient dynamical systems with discontinuous
right hand sides. These dynamical systems arise from the steepest descent technique
applied to a variety of problems suitably formulated as constrained minimization prob-
lems. The problems susceptible to this approach include linear programming problems
and specifically the k-winners-take-all problem, the problem of solving underdetermined
linear systems arising in least squares support vector machines, and quadratic program-
ming problems associated to the support vector machine approach to classification. The
advantage of the proposed analysis is the derivation of simple convergence conditions.
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1. INTRODUCTION

Gradient dynamical systems to solve linear program-
ming problems were first proposed by Pyne and sub-
sequently analyzed in several papers and, notably, in
the book Utkin (1992). An excellent account of this
work can be found in Chonget al. (1999), which
contains the first complete and rigorous analysis of
a particular class of gradient dynamical systems with
discontinuous right hand sides. In fact, we will use the
latter, but will develop an alternative analysis that is
applicable to a larger class of problems, starting from a
Liapunov function first proposed by Persidskii (1969)
and further developed in Hsuet al. (2000) as well
as Kaszkurewicz and Bhaya (2000). This so called
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Persidskii type diagonal Liapunov function leads to
conditions (for the linear programming problem) that
are more tractable than those obtained by Chonget
al. (1999). The class of gradient systems with dis-
continuous right hand sides considered in this paper
can be regarded as neural networks with discontinuous
activation functions (Cichocki and Unbehauen, 1993).

The notation is standard. We denote column vectors
by boldface lowercase letters, likex, c. Scalars are
represented by lowercase italic letters, likex or Greek
letters, likeγ, while sets are represented by capital
Greek letters such as∆. Matrices are denoted by
uppercase boldface letters, likeP. Vector functions are
denoted byf(x) which, unless otherwise specified, are
diagonal type functions, i.e.,

f(x) = (f(x1), . . . , f(xn))T ,

wherexj are the components of vectorx, for j =
1, . . . , n. Finally, the step-like set-valued functions
hsgn, uhsgn, sgn are defined for use below. Note that



all are discontinuous at the origin and these functions
will usually occur as components of diagonal func-
tions, which are denoted using the same abbreviations.

hsgn(a) :=







0, if a > 0

∈ [−1, 0], if a = 0

−1, if a < 0

uhsgn(a) :=







1, if a > 0

∈ [0, 1], if a = 0

0, if a < 0

sgn(x) =







−1, if x < 0

∈ [−1, 1], if a = 0

1, if x > 0.

2. PERSIDSKII TYPE RESULTS FOR
NONSMOOTH DYNAMICAL SYSTEMS

Persidskii systems and the corresponding diagonal
type functions were first presented in (Persidskii,
1969), where absolute stability was proved for such
systems by means of diagonal type Lyapunov func-
tions. Kaszkurewicz and Bhaya (2000) studied such
systems in further detail, while Hsuet al. (2000) an-
alyzed a class of Persidskii systems with discontin-
uous right hand side. The latter result is generalized
in this section. Consider the following Persidskii-type
system:

ẋ(t) = −Af(x(t)), (1)

wherex = (x̄T , x̂T )T , x̄ ∈ R
p, x̂ ∈ R

q, f(x) =
(x̄T ,gT (x̂))T , A ∈ R

n×n, n = p + q and the
vector functiong : R

q → R
q satisfies the following

assumptions:

a) g(x̂) is a piecewise continuous diagonal type
function,

g(x̂) = (g1(x̂1), . . . , gq(x̂q))
T , (2)

b) x̂igi(x̂i) ≥ 0, i = 1, . . . , q;
c) g is continuous almost everywhere (i.e., the

points at which it is discontinuous form a setM
of Lebesgue measure zero).

Furthermore, when thegis are chosen as hsgn, uhsgn,
sgn functions, the setM is described by the intersec-
tion of surfaces

⋂

i{x : gi(x̂i) = 0}, which is referred
to as asurface of discontinuity. Since system (1) has
discontinuous righthand side, its solutions must be
considered in the sense of Filippov (1988). According
to Filippov’s theory, when trajectories are not con-
fined to the surface of discontinuity, the solutions are
considered in the usual sense, otherwise the solutions
of (1) are the solutions of the following differential
inclusion:

ẋ(t) ∈ G(x(t)), (3)

wherex is absolutely continuous, defined almost ev-
erywhere within an interval, and the setG is described
as the convex hull containing all the limiting values of
g(x), whenx → x′ ∈ M . We define the setG by
means of the equivalent control method (Utkin, 1992).

The following is the main result of this paper.

Theorem 1. Consider the Persidskii-type system (1).
If there exist a symmetric positive semi-definite matrix
S and a positive definite block diagonal matrixD such
that

D =

(

D11 0

0 D22

)

,

where the blockD11 is symmetric positive-definite
and D22 is positive diagonal, such thatA = SD,
then the trajectories of (1) converge to the invariant
setA := {x : f(x) ∈ N (A)}.

Proof. (sketch only) Let the following nonsmooth
candidate Liapunov function of Lure-Persidskii type,
associated to the Persidskii-type system (1) be:

V (x) =
1

2
x̄T D11 x̄ +

p+q
∑

i=p+1

d
(2)
ii

∫ x̂i

0

gi(τ)dτ−





1

2
x̄∗T D11 x̄∗ +

p+q
∑

i=p+1

d
(2)
ii

∫ x̂∗i

0

gi(τ)dτ



 ,

(4)

wherex∗T belongs to the invariant setA := {x :

f(x) ∈ N (A)}, d
(2)
ii are elements of a positive di-

agonal matrixD22 and matricesD11 and D22 are
the diagonal elements of a block diagonal matrixD.
If A = SD, the time derivative of (4) along the
trajectories of (1),

V̇ = ∇V T ẋ = −fT (x)DSDf(x). (5)

Notice that if S is positive semi-definite, theṅV is
negative semi-definite. Consider the Lure-Persidskii
function (4) and its time derivative (5). Notice that
V̇ = 0 iff Af(x) = 0 and, consequently,̇x = 0 for
f(x) ∈ N (A). Thus,A = {x : f(x) ∈ N (A)} is an
invariant set. Since, by assumption,A = SD, (5) can
be written as

V̇ = −fT (x)DSDf(x). (6)

Given the fact thatf(x) is discontinuous in a setM ,
we analyzeV̇ under three assumptions:

i) x(t) /∈ M , i.e., the trajectories of system (1) are
not confined to the surface of discontinuity. In
this case, the solutions of (1) exist in the usual
sense, thus sinceS is positive semi-definite, it is
immediate thaṫV (x) ≤ 0;

ii) x(t) ∈ M , for t ∈ [t0, tf ], i.e., the trajectories
of system (1) are confined to the surface of
discontinuity during a certain time interval. In
this case, the vectorsSDf(x) are described by
some vectore such thatẋ = −e ∈ G(x) and we
haveV̇ = −eT e ≤ 0.

iii) Components ofx̂i(t), for somei are at points
of discontinuity of the correspondinggi, while
the remaininĝxj(t), j 6= i are not at points of
discontinuity of the correspondinggj : this case
can be treated in a way similar to items i) and ii)
above.



Consequently, from items i), ii), iii) and using the
nonsmooth version of LaSalle’s theorem (Shevitz and
Paden, 1994), the trajectories of (1) converge to the
invariant setA. Theorem 1 is an extension of the result
in Hsuet al. (2000) and it provides a general conver-
gence result for Persidskii systems with discontinuous
righthand sides. An extension of theorem 1 is also
needed in applications to linear programming for the
following modification of the dynamical system (1)

ẋ(t) = −Af(x(t)) − c, (7)

wherec is a constant vector, and the other symbols are
as defined above. The extension of theorem 1 appears
in section 5.0.1.

3. SOLVING LINEAR SYSTEMS

This section considers the problem of finding a solu-
tion to an underdetermined system of algebraic linear
equations of the form:

Ax = b, (8)

whereA ∈ R
m×n has full row rank,m ≤ n, x ∈

R
n and b ∈ R

m. The least absolute deviation or
L1 approach is to solve the following unconstrained
optimization problem:

Minimize E(x) = ‖r(x)‖1, x ∈ R
n, (9)

wherer(x) := Ax−b, and‖ ·‖1 denotes the 1-norm.
A solution of the optimization problem (9) is regarded
as a solution of the system of linear equations (8) in the
L1 sense, and is well known to have good robustness
properties in regard to outliers and bad data (Portnoy
and Koenker, 1997), as opposed to the popular least
squares (L2) solution.

Let ri : R
n → R be the components of vectorr. The

set∆ := {x : r(x) = 0} is defined as:

∆ =
m
⋂

i=1

∆i; ∆i := {x : ri(x) = 0}, (10)

The minimum of the energy functionE in (9) is
r = 0, consequently, a solution of problem (9) is a
vector x∗ ∈ R

n such thatx∗ ∈ ∆. Notice thatE
is convex inr, thus its unique minimizer is the zero
vectorr∗ = 0, and it is nondifferentiable atr = 0.
The optimization problem (9) is solved in the present
paper by mapping it into a gradient system of the form:
ẋ = −M∇E(x), whereM = diag (µ), is a positive
diagonal matrix withµ ∈ R

n. In the context of neural
networks, the objective functionE is referred to as a
computational energy function, whileM is referred to
as alearning matrix, and used to improve convergence
speed (Cichocki and Unbehauen, 1993). Consider the
following gradient system associated to problem (9):

ẋ = −MAT sgn(r). (11)

Notice that the functionE(x) in (9) is nondifferen-
tiable at∆i = 0, leading to the discontinuous right-
hand side of (11).The solutions of (11) are considered

in the sense of Filippov (Filippov, 1988), and the set
∆ is referred to as asurface of discontinuity. If the
trajectories of (11) are confined to∆, this motion is
said to be asliding motion or, equivalently, the system
is said to be insliding mode. This is equivalent to say-
ing that the motion occurs in the hyperplane tangent
to the surface of discontinuity. Further details about
sliding modes can be found in (Utkin, 1992; Edwards
and Spurgeon, 1998).

3.1 Convergence analysis

Convergence analysis is performed using a Persidskii
form of the gradient system (11) in conjunction with
the corresponding candidate diagonal type Lyapunov
function. The Persidskii form of (11) is obtained by
premultiplying (11) by the matrixA. Observe that
sinceṙ = Aẋ, from (11) we get:

ṙ = −A M AT sgn(r). (12)

The following proposition holds.

Proposition 1. The Persidskii system (12) is equiva-
lent to the original gradient system (11), in the sense
that ṙ ≡ 0 iff ẋ ≡ 0.

Proposition 1, which has a simple proof omitted here,
is necessary since it ensures that the convergence re-
sults derived for the Persidskii system (12) also hold
for the original gradient system (11). Since system
(12) has a discontinuous righthand side, we choose
following nonsmooth candidate diagonal type Lya-
punov function (Hsuet al., 2000):

V (r) =
m

∑

i=1

∫ ri

0

sgn(τ) dτ. (13)

Observe that i)V (r) > 0 for r 6= 0; ii) V (r) = 0 if
and only ifr = 0. The time derivative ofV along the
trajectories of (12) is given bẏV = ∇V T ṙ, i.e.,

V̇ (r) = −sgnT (r)A M AT sgn(r). (14)

Notice that sinceA has full row rank andM is posi-
tive definite, thenA M AT is also positive definite.
Consequently,V̇ ≡ 0 if and only if sgn(r) ≡ 0

implying ṙ ≡ 0 and, from Proposition 1,̇x ≡ 0 and
we have:

Theorem 2. The trajectories of system (11) converge,
from any initial conditions, to the solution set of the
system of linear equations (8) in finite time and remain
in this set thereafter. Moreover, the convergence time
tf satisfy the boundtf ≤ V (r0)/λmin(AMAT ),
wherer0 := r(x0).

4. SUPPORT VECTOR MACHINES (SVM)

Given two classesA and B, the classical pattern
recognition problem of finding the best surface that



separates the elements of two given classes can be
described as follows. Consider the following training
pairs:

(y1, z1), . . . , (ym, zm), yi ∈ {−1, 1}, (15)

where the vectorszi belong to the input space and
the scalarsyi define the position of the vectorszi in
relation to the surface that separates the classes, i.e., if
yi = +1 the vectorzi is located above the separating
surface and ifyi = −1, this vector is located below
the separating surface. If given a set of pairs as in
(15), a single hyperplane can be chosen such that
∀ i, yi = ±1, then the set of points{zi}

m
i=1 is said

to belinearly separable.

Consider two classesA andB, not necessarily linearly
separable, identified asyA = +1 and yB = −1,
respectively. The problem of finding the best hyper-
plane Π := {u : uT z + c = 0} that separates
the elements of classesA and B is modeled by the
following quadratic optimization problem (Cristianini
and Shawe-Taylor, 2000):

min ξ(u, e, c) =
1

2
uT u + b

N
∑

k=1

ep
k (16)

s.t.yi(u
T zi + c) ≥ 1 − ei; ei ≥ 0, i = 1, . . . ,m.

wherep is a positive integer,u, zi ∈ R
n andei, ∈

R. The quantityyi(u
T z + c) is defined as the mar-

gin of the inputz with respect to the hyperplaneΠ.
The hyperplaneΠ that solves problem (16) gives the
soft margin hyperplane, in the sense that the number
of training errors is minimal (Scḧolkopf and Smola,
2002; Cristianini and Shawe-Taylor, 2000).The slack
variablesei are introduced in order to provide toler-
ance to misclassifications.

For nonlinear classification, a feature functionφ, that
maps the input space into a higher dimensional space
is introduced. In this case, the constraints of problem
(16) becomeyi(u

T φ(zi) + c) ≥ 1 − ei, i =
1, . . . ,m. The traditional approach is to solve the dual
of (16), since in this case, instead of the functionφ,
another class of functions, known as kernel functions
and defined asK(z, zi) = φT (z)φ(zi) is used, with
the advantage that it is not necessary to know the
feature functionφ. The feature functionφ is defined
implicitly by the kernel which is assumed to satisfy
the Mercer conditions (Schölkopf and Smola, 2002;
Cristianini and Shawe-Taylor, 2000).

4.1 LS-SVM

The LS-SVM model is a modification of the original
SVM model (16), in which the inequality constraints
are replaced by equality constraints. The LS-SVM is
modeled by the following constrained optimization
problem (Suykenset al., 2002):

min ξls(u, e, c) =
1

2
uT u +

b

2

n
∑

i=1

ei (17)

s.t.yi(u
T φ(zi) + c) = 1 − ei, i = 1, . . . ,m

The dual problem of (17) is given by the following
system of linear equations, also known as a Karush-
Kuhn-Tucker (KKT) linear system (Suykenset al.,
2002):

[

0 yT

y Q + b−1 I

] [

c
α

]

=

[

0
1

]

, (18)

where Q is a symmetric matrix given byqij =
yiyjK(zi, zj) andK is defined by the kernelK(z, zj) =
φT (z)φ(zj). In the LS-SVM model, the problem of
determining the best separating surface for classes
A and B is reduced to solving the system of linear
equations (18), which has a full rank coefficient ma-
trix if b−1 6= −λi(Q), ∀i. Thus by Theorem 2, the
trajectories of the gradient system (11), withA, x and
b defined as in (18), converge in finite time to the
solution of (17).

Numerical examples and further details can be found
in Ferreiraet al. (2005).

4.2 ν-SVC for nonlinear separation

There are several formulations for the nonlinear sepa-
ration problem (Cristianini and Shawe-Taylor, 2000).
The ν-SVM formulation (Scḧolkopf et al., 2000) fits
into the general formulation of Theorem 1 and is mod-
eled by the following constrained optimization prob-
lem:

min τ(w, ξ, η) =
1

2
‖w‖2 − νη +

1

m

m
∑

i=1

ei (19)

s.t.yi(w
T φ(zi) + c) ≥ η − ξi, andη ≥ 0, ei ≥ 0,

whereφ is a feature map function, which provides
the classifier with the ability of performing nonlinear
discrimination of patterns. The additional parameter
ν controls the number of margin errors and support
vectors (Scḧolkopf and Smola, 2002). The dual of the
constrained optimization problem (19) is as follows:

min ξν(α) =
1

2
α

T Qα (20)

s.t.yT
α = 0, (21)

α − m−11m ≤ 0m and (22)

Bα − νh ≥ 0m+1. (23)

where the column vectors0m,1m ∈ R
m, 0m+1 ∈

R
m+1, α ∈ R

m, qij = yiyjφ(zi)
T φ(zj) and the

matrixBT := (1m Im) and the column vectorhT :=
(1 0m). Notice that the objective functionξν is ho-
mogeneously quadratic inα and the constraints of
the quadratic programming problem are linear. Let
r := Bα − νh, x = yT

α andv := α − m−11.



Applying the exact penalty function method to (20)
we obtain:

min E(α) =
1

2
α

T Qα + ρ|x| − γ
n

∑

i=1

min(0, ri)+

β
n

∑

i=1

max(0, vi). (24)

The gradient systeṁα = −∇E(α) associated to the
unconstrained optimization problem (24) is given by:

α̇ = −Qα−ρy sgn(x)−γBT hsgn(r)−βuhsgn(v),
(25)

4.2.1. Convergence analysis: Define the functionf
and the vectorθ as:

f(θ) := (αT , sgn(x), hsgnT (r), uhsgnT (v))T (26)

θ := (α, x, r,v). (27)

An augmented dynamical system in the vectorθ can
be written as the Persidskii system:

θ̇ = −Af(θ), (28)

where the matrixA is:

A =







Q ρy γBT βI

yT Q ρyT y γyT BT βyT

BQ ρBy γBBT βB

Q ρy γBT βI







.

Matrix A can be factored into the formA = SD,
where:

S :=







I y BT I

yT yT y yT BT yT

B By BBT B

I y BT I







, D :=







Q 0 0 0

0 ρ 0 0

0 0 γI 0

0 0 0 βI







.

(29)

Theorem 3. If Q is positive definite then, for any posi-
tive constantsρ, γ andβ, the trajectories of the system
(25) converge to the solution of the dual quadratic
programming problem (20).

The proof of this theorem follows directly from Theo-
rem 1 observing that the positive definiteness of matrix
Q, assumed in theorem 3, is achieved by choosing
positive-definite kernels in the implementations. Ob-
serve also that the convergence of the gradient system
does not depend on the parameterν.

5. LINEAR PROGRAMMING SOLUTION OF
THE KWTA PROBLEM

Urahama and Nagao (1995) formulated the KWTA
problem as the following integer programming prob-
lem:

max
x

cT x

s.t.1T x = k, x ∈ {0, 1}n,
(30)

converted it into a nonlinear programming problem,
and solved it by minimizing an associated Lagrangian
function. In fact, the integer programming problem

above can be relaxed to the following LP problem with
bounded variables:

max
x

cT x

s.t.1T x = k, x ∈ [0, 1]n
(31)

wherec = [c1, . . . , cn]T , 1 = [1, . . . , 1]T ∈ R
n×1,

k ≤ n ∈ N is a nonnegative integer andx ∈ R
n×1.

The following proposition states that the integer pro-
gramming problem (30) and its relaxed version (31)
have the same solutionx∗.

Proposition 2. Consider the LP problem (31), and let
the components of vectorc be distinct. Then, the
solution of the LP problem (31) is unique and presents
k components equal to one, which, correspondingly,
multiply the k largest components of vectorc in
the objective functionz, while then − k remaining
components are equal to zero.

Applying the penalty function method, we have:

min E(x, γ, ρ) = −cT x−

γ





n
∑

j=1

min(0, xj) −
n

∑

i=1

x+
j



 + ρ |1T x − k|

(32)
where, for eachj

x+
j =

{

xj − 1 if xj > 1

0 if xj ≤ 1.

Consider the gradient systeṁx = −∇E(x), that
minimizesE, which is given by:

ẋ = c − γ[hsgn(x) + uhsgn(x)] − ρ1sgn(1T x − k)
(33)

5.0.1. Convergence results Let X be the solution
set of the LP problem (31). Convergence to the setX
is defined, after (Utkin, 1992, pg. 229), as follows.

lim
t→∞

min
X

‖x(t) − x∗‖ = 0, x∗ ∈ X ,

Convergence of the system described by equation (33)
occurs in two steps, commonly known as thereaching
phase and thesliding mode, in the literature on vari-
able structure systems (Utkin, 1992). Our analysis is,
accordingly, also in two steps. First, we derive suffi-
cient conditions for the reaching phase, i.e., to ensure
convergence to the feasible set of problem (31), which
is given by the intersection

Ω := Π ∩ Γ, (34)

whereΠ := {x : 1T x − k = 0} andΓ := {x : xj ∈
[0, 1], for eachj}. In common with methods that use
discontinuous switching functions (hsgn, uhsgn, sgn),
the dynamical system (33) has the pleasant property
of a finite time reaching phase (31), which means that
there exists̄t < ∞ such thatminX ‖x(t) − x∗‖ → 0,
x∗ ∈ X , ast → t̄ (Chonget al., 1999).

Premultiplying (33) by the row vector1T and noticing
that ṙ = 1T ẋ we get,

ṙ = 1T c − γ1T h(x) − ρ1T 1sgn(r). (35)



Writing equations (33) and (35) in vector notation, we
get
[

ẋ

ṙ

]

=

[

c

1T c

]

−

[

In 1

1T 1T 1

] [

γ In 0n×1

01×n ρ

] [

h(x)
sgn(r)

]

.

(36)
Defining

D =

[

γ In 0n×1

01×n ρ

]

, S =

[

In 1

1T 1T 1

]

, (37)

using the standard choice of the following Persidskii
diagonal type “sum of integral-of-nonlinearities” Lya-
punov function:

V (x, r) = γ
n

∑

j=1

∫ xj

0

h(τ)dτ + ρ

∫ r

0

sgn(τ)dτ,

(38)
and recalling that in the reaching phase,x /∈ Ω, i.e.,
h(x) 6= 0 or 1T x − k 6= 0, it is possible to derive the
following lemma.

Lemma 1. Consider the system of ordinary differen-
tial equations (33). Provided thatγ andρ satisfy the
following inequality

min(γ2, nρ2, n(γ − ρ)2) ≥ ‖c‖1(γ + ρ) (39)

then, for any initial condition, the trajectories reach the
setΩ, defined in (34), in finite time and remain in this
set thereafter.

Lemma 1, the proof of which is omitted but available
on request, results in tractable convergence conditions
because the inequality (39) leads to bounds that are
easy to calculate, and depend only on the 1-norm of
vectorc, as the reader can easily check.

It remains to show that the LP problem (31) and the
unconstrained problem (32) have the same solution
x∗ and that, in sliding mode, the trajectories of the
dynamical system (33) converge to the solution of the
LP problem. These straightforward proofs are omitted
for lack of space (see Ferreiraet al. (2003)). We
now have all the elements needed to ensure that the
network modeled by the gradient system (33) is a
“k-winners-take-all” network, stated in the theorem
below.

Theorem 4. Consider the network described by the
system (33),and assume that the network gainsγ and
ρ satisfy the inequality (39). Then, given a vectorc ∈
R

n, with distinct components, and a positive integer
k ≤ n, the network described by (33) is a KWTA
network, i.e., trajectories from all initial conditions
converge to the solution. 2

6. CONCLUDING REMARKS

Several examples from different areas show that the
generalized Persidskii theorem and its corollaries pro-
posed in this paper lead to simply computable con-
ditions for convergence of dynamical systems with

discontinuous right hand sides. This is, in the case of
the KWTA and SVM problems, a considerable simpli-
fication of general LP results proposed earlier in the
literature (Chonget al., 1999). Another area of poten-
tial applications is in the congestion control of com-
munication networks: a gradient search algorithm for
a non-differentiable objective function is mentioned in
Wu et al. (2001, p.1276), and a sliding mode approach
is used by Lagoaet al. (2004) in this problem.
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