Input-Dependent Threshold Function for an Actuator Fault
Detection Filter

Héctor Rotstein ® Ryan Ingvalson # Tamas Keviczky * Gary Balas ®

2Dept. of Aerospace Engineering, University of Minnesota, MN55455, USA
bRafael and the Dept. of Electrical Engineering, The Technion, Haifa 3200, Israel

Abstract

The flight control system is a safety-critical component of an UAV and hence should include a level of fault detection (FD)
and controller reconfiguration to be used in case a faulty condition is declared. This paper reports the design of a FD filter
for the lateral channel of an UAV. The main theoretical contribution is a new threshold function that enhances the fault
detection capabilities in the face of substantial model uncertainty. Simulation result shows that the new threshold function in
combination with a fault detection filter can detect a fault in the lateral channel of an UAV flight control. Copyright ©IFAC

2005
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1. Introduction

The flight control system is a safety-critical com-
ponent of an UAV and hence should include a level
of fault detection (FD) and controller reconfiguration
to be used in case a faulty condition is declared. This
paper reports the design of a FD filter for the lateral
channel of an UAV, performed in the framework of
the Software Enabled Control (SEC) program (Samad
and Balas, 2003.) SEC was a research initiative un-
dertaken by DARPA and the U.S. Air Force Research
Laboratory (AFRL) to exploit recent developments in
software and computing technologies for applications
to control systems. The program culminated with a
flight test during June 2004, where the main technolo-
gies developed during the project were demonstrated
in a “simulated” UAV.

To understand the challenge involved in designing
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Fig. 1. Setup for Fault Detection in the SEC experiment. Notice
that only the signals u and y are available for processing

an FD filter for the SEC flight test, consider the block
diagram illustrated in Figure 1. The signals available
for control and FD were the control signal u and the
measurement signal y. Hence the system of interest
was an input/output black-box for which the accurate
nonlinear model DemoSim was developed by Boe-
ing and provided to the groups involved in the SEC.
As could be expected, the resulting model and sys-
tem involve complexities that cannot be ignored when
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doing control and FD design: unknown time-delays,
non-linear behavior in the form of various limiters at
the auto-pilot level, plant variations over the flight-
envelope, etc.

The signals internal to the closed-loop system
formed by the auto-pilot, actuators, aircraft dynamics
and avionics were not available for design or use nei-
ther for DemoSim nor for the actual flying platform.
The reason for this limited information was a com-
bination of proprietary and confidential information
and, needless to say, greatly limits the FD options.
Indeed, almost every approach to FD assumes that ei-
ther a possibly inexact model of the internal dynamics
of the system of interest exists or that learning from
examples is possible. In the present case, a model
was indeed available but it was too limited to allow,
for instance, the evaluation of the effect of an actua-
tor fault. Moreover, faults due to changes in internal
dynamics or variables could not be simulated since
the possible dynamics/variables were unaccessible
for experiments. The challenge was then to develop
an FD system that could be designed and tested both
in a hardware-in-the-loop and actual flight in the face
of the limited information and actuation available. As
reported in this paper, the challenge was addressed by
using a number of tools, including H ., fault detection,
a full nonlinear aircraft simulator for fault models
estimation and the development of a new threshold
function as detection tool.

An Input-Dependent Threshold Function

Fault detection is understood as the ability to recog-
nize unexpected changes in the functioning of a sys-
tem, usually resulting from physical failures or break-
downs. An FD scheme usually consists of two stages:
an FD filter for generating residuals and a decision
stage for analyzing the residuals and deciding if a fault
has actually occurred. Relatively little has been done
in combining robust FD filters with the synthesis of
a robust threshold strategy. For example, in (Stous-
trup et al., 2003) the optimal threshold function is in-
vestigated, where optimality is understood in terms
of false-alarm and miss-detection rates. This approach
provides a practical solution when the basic trade-off
is with measurement noise, but becomes less conve-
nient when measurement noise is small as compared

Fig. 2. Fault Detection Setup

to model uncertainty.

In the presence of large model uncertainty the resid-
uals generated by any FD filter are usually not small
and hence a threshold function must be designed ca-
pable of separating the effect of tolerable model mis-
match from a fault. The present paper presents an ex-
ample of such a design using energy-motivated argu-
ments. The approach here has some points of contact
with (Shim and Sznaier, 2003), here a model invali-
dation argument is used to decide off-line whether a
fault has occurred or not. Exploiting the special struc-
ture of the SEC problem, it is shown in this paper that
an alternative criterion may be formulated which dra-
matically reduces the computation cost and hence can
be implemented in real-time.

2. The H,, Fault Detection Filter

Figure 2 shows the setup for the FD problem under
consideration. The block G,,,,, represents the nomi-
nal model of the system. As seen in the figure there
are two uncertain blocks that one could consider. The
first block A is associated with the fault. The second
block A,,, models the uncertainty involved in the mod-
eling. The weighting functions W; and W, allow the
introduction of a priori knowledge on the nature of the
fault and the plant uncertainty. As mentioned in the
introduction, the system object of the fault detection
involves a closed-loop configuration, and the two un-
certainty blocks represent an input-open effort at mod-
eling plant uncertainty and faulty dynamics. Hence
also the reason for having two cascaded multiplicative
uncertainty blocks included in the configuration. This
setup clearly highlights that if there is no frequency
separation between faults and uncertainty, then the two
cannot be distinguished using input-output signals.

Following the idea of H,, norm-based fault detec-
tion (see, e.g., Chen and Patton, 1999), the configura-
tion in Fig. 2 is re-drawn as shown in Fig. 3. In this
figure, the uncertainty blocks Ay and A,,, have been
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Fig. 3. Setup for the Ho, Fault Detection Filter design. If the
transfer function from f to 7 is “small,” then the residual 7 tracks
the fault signal f

removed and two new fictitious signals f and d have
been included. The objective of the H,design is to
make the transfer matrix 7}, between the extended
input w = [f w d]T and the residual r small in an
H, sense. This would imply, in particular, that the
residual error 7 of the FD filter tracks the fault f =
W f. Notice that the particular uncertainty model se-
lected also covers disturbances at the plant input.

One of the advantages of this formulation is that stan-
dard tools for H, control design (e.g., Balas et al.,
2001) can be used to design the filter. Notice, how-
ever, that other alternative approaches to H, fault de-
tection are possible, as discussed in (Chen and Patton,
1999, Ch. IX). For example, one may one to maximize
(in some sense) the minimum transmission channel
between faults and residuals.

From Fig. 3, the residual is related to the inputs by

r=F[Gn, Wif+Wpd)+Wyn] —W;f
=(FGm - Wif+ FGuWpd+FW,n (1)

Equation 1 shows the trade-off involved in this fault
detection problem. In order to track the fault, the filter
F should invert the plant GG, in the bandwidth of the
fault as determined by . At the same time, the filter
should be small enough to attenuate the effect of noise
W,,n and of plant uncertainty (and input disturbance)
G Wy d. If there is a good frequency separation for
these two, then a good solution can be obtained by
approximating G, in the frequency band of interest
and then “rolling-off™ to prevent disturbance and noise
affect the residuals.

Notice that if the passing-bands of W and G, W,
or W, largely overlap, then no FD filter will be able
to isolate a fault adequately. This should be a major
concern in the design of a FD filter for a closed-loop
system. In many cases of practical importance, how-
ever, separation will hold approximately and H, fil-
tering may be used to produces the best compromise.
This observation motivates the topic of the next sec-
tion: the design of an adequate decision criterion.

3. Is there a Fault?

In the absence of a clear frequency separation, plant
uncertainty will result in a non-negligible residual even
if no fault is present. The use of a simple thresholding
strategy will hence give rise to a large number of false
alarms or, if the threshold value is increased, miss-
detections. This section describes an input-dependent
threshold function that exploits the additional infor-
mation assumed for the system. From Fig. 2,

r=F(Gn (I+A,Wn) (I +A;Wy)—Gpl+
Wunn) ()

Following the model invalidation paradigm (Smith and
Doyle, 1992, Smith et al., 1997) a fault will not be
declared if there exist A,, stable and n such that
[Anlleo <1, ||n]|2 < 1, and:

r=F (GmAmeu + Wnn) . (3)

Namely, there exists an uncertainty and a noise consis-
tent with the problem that can “explain” the observed
data.

As shown in (Shim and Sznaier, 2003) in the con-
text of fault detection, given (u(r),r(7)) for 7 =
0,---,t, the problem of verifying the existence of a
norm bounded uncertainty A,, subject to (3) can be
transformed into an optimization problem with a lin-
ear matrix inequality constraint. This fact has interest-
ing consequences for off-line fault detection, but in-
volves the solution of a monotonously increasing op-
timization problem and hence cannot be used for on-
line computations. The objective of this section is to
present an alternative, albeit weaker, criterion suitable
for real-time applications. Consider the projection op-
erator:
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with the simplifying notation 7% = T¢. Then (3) can
be replace by the stronger condition:

[77]l; < T FGon AWy + | T FWoun
®)

for each time instant ¢. Given a causal operator GG, one
has ||T*Gul|, < ||GT"*ul|,, and so (5) implies

[7'r; < | FGmARWnT ull, + [ FWT 0]
6
Given the assumptions [|A,|| < 1, [[n]|, <1,

Tt (|5 < NIFG Wil | Ttull; + I1FWalZ, (D)

Since for a given design the transfer matrices above
are constant, (7) can be re-written as:

|75 < o | Tl + 57 ®)
where:

a = ||F G Wil
B=NEWallo -

The condition (8) can be used for fault detection in
real time applications. Indeed, one can compute the
threshold signal:

1@ =Ty = o Tl - 6* @)

for each time ¢ and declare a fault if f(¢) > O at some
time instant ¢.

Notice that if (5) holds for each time %, then (3)
will also hold true. The opposite is not necessarily true
for time-invariant uncertainties A,,, and in general
the former condition will be much more restrictive.
The condition becomes necessary and sufficient if the
uncertainty is allowed to be time-varying. In addition
to the above, the use of the triangular inequality and
the norm-bounding properties makes (8) a sufficient,
but in general far from necessary condition for (3).
Hence (9) must be relaxed to make it useful in practice.

3.1. Relaxing the Condition

In addition to gap between (3) and (6), there are
good reasons to relax the latter by introducing new
design parameters. Indeed, during the fault detection

filter design stage, the weighting functions W,,, W,
may be modified to achieve desirable behaviors of the
filter not necessarily captured by the H., formula-
tion (e.g., a roll-off rate). This is especially true for
the noise signal n, which more often than not is of a
stochastic nature and hence can only be approximately
modeled within an H,, design. Moreover, His a
worst case criteria and hence the threshold strategy
defined above cannot deal directly with false-alarm
and miss-detection rates, which are usually given in
terms of probability of occurrence and are central in
any fault detection design. In addition, the threshold
strategy (9) may give rise to fault miss-detection since
it trends to become insensitive to faults if W, is rel-
atively large as compared to the actual plant/model
mismatch observed in practice. Finally, at some points
during the operation of the system, one may want to
allow for relatively large plant/model mismatch, not
captured by the uncertainty bound W,,. In these in-
stances, (9) may result in a false-alarm since the un-
duly mismatch effectively behaves as a fault.

In order to relax the condition in equation (8), two
design parameters are introduced. First, the running-
norm is modified by introducing a forgetting factor
k<1

t—1
Stu(t) = 3 6 ()|

This exponential decay of the influence of “old” data
can be used for both norms in eqn. (9). The usage of the
forgetting factor has two main consequences: Second,
the noise level 3 is replaced by a tunning parameter
[ that can be used to reduce the false-alarm rate. This
parameter can be tuned by analyzing (u(t), r(t)) data
records under benign conditions, e.g., operating points
where model/plant mismatch is small.

4. Fault Detection for the SEC Program

The fault detection design for the SEC program
was based on the simulation DemoSim of the T-
33/UCAV aircraft provided by Boeing to the SEC
research groups. DemoSim is a black-box simulator
of the T-33/UCAV. As mentioned in the introduction,
although one can provide inputs, modify a few func-
tioning parameters, and observe output logs there is



no access to the internal signals, dynamics, or logic
of the simulator. As a consequence and in addition to
standard model uncertainty, one needs to address the
fact that DemoSim ’s auto-pilot implementation and
internal discrete logic (saturation levels, limiters) are
unknown. To make things even harder from a fault de-
tection viewpoint, the inputs to DemoSim are actually
autopilot commands and hence only guidance-level
(i.e. kinematic) control of the vehicle was possible.

To demonstrate the capability of designing a fault
detection scheme using an H, filter and the thresh-
olding strategy discussed above, we concentrated on
a single-input, single-output sub-system, namely the
lateral-directional dynamics from ¢y q tO Xmeas» SUb-
sequently referred to as the y-channel. The reason
for this selection was that it was expected that X.meas
would be essentially decoupled from the other two
inputs when control commands are restricted to lie
within tolerable limits. Thus, the FD problem could
be simplified to a single-input, single-output (SISO)
problem.

The following linear model was identified from in-
put/output data obtained from the DemoSim ’s x-
channel:

2.48 - 107323

Gm = .
(z —0.98)(22 — 1.89z + 0.90)

4.1. Fault Model

As mentioned above, DemoSim does not provide a
way of internally simulating a fault and hence it was
necessary to simulate a fault by either corrupting the
input or output channel of DemoSim in such a way
that the resulting output resembled a faulty system.
There are many ways in which this can be done, and
the for this project a multiplicative input fault was
chosen, as shown in Figure 4. In this figure, u is the
actual or true command to be fed to DemoSim , and
4 is the “corrupted” command which will produce the
“faulty” output. The no fault scenario corresponds to
the case when the “Fault On” switch is open, 4 = wu.
Since only the lateral motion was being considered in
this FD problem, it was necessary only to look at faults
which would, in reality, have strong coupling to this
channel. One such fault would be an aileron actuator
fault. Hence, W; was designed such that the overall

Fault On
%» Wf 4’?_11’

Fig. 4. Multiplicative Fault Input

system (i.e. with the multiplicative fault input) would
behave as if a true aileron actuator fault occurred.

Physically, an aileron actuator fault may commonly
result in changing the dynamics of the actuator, e.g.
a change in the damping or natural frequency of the
actuator. These changes could result from actual dam-
age, i.e. faults, to the physical system—such as a loss
of hydraulic pressure or damage to the aileron control
surface.

W; was estimated by using another aircraft simu-
lation in which the parameters of the actuators could
be changed and then performing frequency scaling to
take into account the differences with the T-33/UCAV.

4.1.1. Generation of Nominal and Faulty Responses

As mentioned earlier, the fault being simulated is an
aileron actuator fault. In the simulation, this actuator
is modeled as a second-order system with a nominal
natural frequency of w,, = 16.4 rad/sec and damping
ratio (,, = 0.67. Using these parameters, the nominal
response y was generated with the simulation.

The collection of the faulty cases was chosen with
natural frequency wy € [15,3] rad/sec and damping
ratios from ranges (y € [0.7,1.5]. This was done to
cause the actuator to exhibit a slower response; and,
thus, be more characteristic of a truly faulty or de-
graded actuator. A number of these fault cases were
simulated to generate faulty responses g, which were
used to generate a frequency response for each fault
case. The upper bound fit Wf to these responses was
the weight used in design. Future reference to W will
be understood to refer to this upper bound. The result-
ing transfer function was:

_2.6-10"%s(s 4+ 10)(s + 5)(s + 0.3)
I = (5+09)(s+02)(s2 +0.416s + 0.64)

5. Results

This section will contain a summary of the simu-
lation results obtained from integrating the FD filter
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Fig. 5. Simulation Diagram

with DemoSim under a specific trajectory and fault
scenario. Based upon the interconnection used in the
H oo design, the simulation environment illustrated in
Figure 5 was used to test the fault detection filter. For
lack of space, the procedure for tunning the filter is not
discussed here. It is important to stress, though, that
the tunning was performed on a different scenario than
the one considered in the simulation discussed next.
In this simulation, 0.5 deg/sec x step commands
were issued to DemoSim —a positive step was fol-
lowed by a negative step. The fault was turned on 70
seconds after the positive step command. The results
are shown in Figure 6. The upper plot shows the be-
havior of the residual 7 and the ”fault” signal f. As ex-
plained above this latter is zero until the fault is turned
on. Notice that, due to model mismatch, the residual
is not negligible also when the fault is not present. In
the case under study, there is a noticeable difference
in the behaviour of the residual with and without fault;
this difference, though, is not enough to allow for a
thresholding policy since the response depends on the
size of the input. The lower plot shows the behavior of
the threshold function computed as discussed above.
The function is still sensitive to model mismatch in the
absence of fault but in a much lesser degree. The func-
tion becomes larger than zero, i.e., a fault is declared,
at t = 247sec., meaning that it takes the FD system
17 sec. to detect the fault. As an illustration, compare
with the “running” energy, namely, the energy over
a running interval, of thte residual function as shown
in Figure 7. Again, this running energy shows an in-
crease when the fault is present, but this difference
is not enough to guarantee appropriate levels of fault
detection, since it scales badly with the input signal.
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