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Abstract: This paper presents a general framework for the coordinated motion control of
autonomous swarms in the presence of obstacles. The proposed framework judiciously
combines concepts and techniques from potential flows, artificial potentials and dynamic
connectivity to realize complex swarm behaviors. To begin with, existing concepts from
potential flows in fluid mechanics are used to solve the single-agent navigation problem.
As an extension, an analytical solution to the stagnation point problem is provided.
The potential flow based framework is then modified significantly to facilitate the
coordinated control of swarms navigating through multiple obstacles. Atrtificial potentials
are employed for swarming as well as enhanced obstacle avoidance. A novel concept
of dynamic connectivity is utilized to improve the performance of obstacle avoidance
(Line of Sight Connectivity) and to organize diverse swarm behaviors (Probabilistic
Connectivity). Simulation results with a set of developed algorithms are included to

illustrate the viability of the proposed framewotkopyrigh@ 2005 IFAC
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1. INTRODUCTION . . . .
. . . i.e., no inter-agent collision and no collision between
Recent years have witnessed a rising interest in theyny agents and obstacles. Secondly, the swarm should
dynamics and control of group behaviors for vehicu- 1,6ve in a formation or flocking mode, i.e., the agents
lar swarms, i.e., systems of multiple autonomous and ghoy|q stay together and move together. Lastly, there

semi-autonomous vehicles. Swarm systems such asnay he additional optimality type of requirements.
insects, birds, fish or mammals are very common in

nature and have served as an inspiration in this re-The motion control problem of a swarm system has
search theme. Outcomes of this research can impact dypically been divided into two subproblems (Ogren,
wide variety of applications, especially in the fields of 2003). The first is on path generation and navigation
cooperative control of autonomous robots, unmannedwith obstacle avoidance, which deals with how to
air vehicles and mobile sensor networks. move an agent (e.g., a robot) from location A to

. _ location B in some efficient manner while avoiding the
In this paper, we focus on the problem of coordinated gpstacles. The second is how to keep the agents as a
motion control of autonomous swarms, i.e., NOW 10 gy arm moving together based on the solution of the
design the control algorithms to enable a group of ayigation problem, i.e., every agent in the swarm is

cooperative agents to move from a starting location qqrdinating with other agents to realize group motion
to a target location in the presence of multiple and \\ithout inter-agent collision.

possibly moving obstacles. There are a number of o . .
essential requirements for the swarm motion. First Robot navigation is a well studied problem in systems
of all, the swarm motion should be collision-free, and control. Typical approaches involve the use of



artificial potential fields, APF), road mapsRM) and The functiony is then calledstream functionand
so on. Among these approaches, #/F method has by virtue of its definition it is valid for all two-
been used extensively for path planning of mobile dimensional flows, both rotational and irrotational
robots. A fundamental problem in the application of (Currie, 1993). If the flow is irrotational, which means
APF method is how to deal with the local minima that 0%y = 0, then the stream function will also satisfies
may occur in a potential field environment. the Laplace’s equation.

In (Waydo and Murray 2003a), a method of using Complex Potentiat The complex potentiadv of an
stream functions to generate smooth paths for vehicleirrotational two-dimensional flow of an inviscid flow
motion planning is introduced. Concepts from hydro- is defined by
dynamic analysis are used to construct potential fields _ i
with no local extrema for vehicle guidance. Related w(2) =9+ 3
work can also be found in (Waydo and Murray 2003b) herez = x+ iy, @ and ¢ are thevelocity potential
and (Sullivangt. al, 2003). Despite the many positive and stream functionrespectively. Then by equating
attributes of stream function based methods, a possiblethe velocity components from (1) and (2) gives the
problem may arise, i.e., the so-called stagnation pointcaychy-Riemann equatioég L —l
problem GP). A stagnation point in fluid dynamics X oy oy ox
refers to a point at which the velocity of the fluid

becomes zero. Once a robot moves on®Pait will
stop there and can never reach the goal.

Instantaneous streamlines are determineg% =

%. which is equivalent taly = 0, so that along

any streamlineg/ =constant. Theomplex velocitys

expressed as (Currie, 1993)
o .0p .
X —|a—y =u—iv

In this paper, we discuss how the stagnation point
may affect the robot navigation, concepts from fluid
mechanics are used to provide a solution to this prob-
lem. Based on the potential flow framework, addi-
tional concepts and techniques from artificial poten-
tials and dynamic connectivity are incorporated to re- The uniform flow, sink and vortex are the most im-
alize coordinated navigation of swarms. Specifically, portant flow types to be implemented for modeling
artificial potentials are employed for swarming as well the navigation of single robot, and their complex po-
as enhanced obstacle avoidance. A novel concept otentials can be expressed ds:= Uz, fs = —ClIn(2),
dynamic connectivity is utilized to improve the per- f, = Ciln(z) respectively.

formance of obstacle avoidance (Line of Sight Con-

nectivity) and to organize diverse swarm behaviors

(Probabilistic Connectivity). Simulation results witha 3. NAVIGATION WITH OBSTACLE AVOIDANCE

set of developed algorithms are included to illustrate

W (2) =

(4)

the viability of the proposed framework.

2. BACKGROUND

As in (Waydo and Murray 2003a), this section gives
a brief introduction of some important concepts from

hydrodynamic analysis. For detailed information, pleas

refer to (Milne-Thomson, 1968) and (Currie, 1993).

2.1 Potential Flows and Complex Potential

Potential Flows and velocity potential If the flow

of an ideal fluid around a body originates in an ir-

rotational flow, then the flow will remain irrotational

even near the body. That is, the vorticity veatowill

be zero everywhere in the fluido(= O x us = 0).

Sinced x Og = 0 holds for any scalar functio,

the condition of irrotationality can then be satisfied

identically by choosingi; = O¢@. ¢ is calledvelocity

potential and flow fields which are irrotational, and

so can be represented in the form wf = Og are

referred to apotential flowsSince the velocitys can

be expressed ag = u+iv, we have
do ~_dg
oV dy (1)

For an ideal flow, the equation of continuity can be

expressed adl- us = 0. Substitute this expression

for us into us = O gives 2@ = 0. So the velocity
potentialg satisfies the Laplace’s equation.

u

Stream Function: In cartesian coordinates, the con-
tinuity equation can be expressed %%4— g—;f = 0.
Introducing a functiony which is defined as
_oy oy

U= dy’v__ﬁx

)

3.1 Avoidance of a Single Obstacle
Circular obstacle in a uniform flow: First, consider
in an uniform flow with strength Uf(, = UZ2) a single
stationary obstacle of radius is placed at Iy, by),
let b = by +iby, apply the Circle Theorem (Milne-
Zhomson, 1968) gives the complex potential:

2

(®)

For simplicity, supposeb, by) is at the origin Q,0),

then the complex potential becomeas= Uz+Ua—2,
and the imaginary part gives the stream function of
the flow:

w:Uz+U(% +Db)

a? a?
W:UY(l—m)ZUY(l—TZ) (6)
Note thaty = 0 on the boundary of the obstacle
therex? 4+ y? = a2, this shows the flow is tangent to

the boundary of the obstacle. The complex velocity
2 2 . .

W(2) =U-U% =U[1- & -y —i2xy). ie.

u=U[1- f‘—f(xz —yA),v= Uf—iny. Herer? = (x —

bx)? + (y — by)2. Usex; andx; to replacex andy, we
have:

a2 2

: . a
x=U[1- rj(X%—X%)LXz =Ug2oe  (7)

a plotting is given as Fig.1 where the red lines rep-
resent the streamlines and the circle centered at the
origin with radius 2 is the obstacle. It can be seen that

none of the streamlines goes into the obstacle.

Circular obstacle in a sink flow: Similarly, consider
a single stationary obstacle of radiass placed in a



sink flow with strengthC. Detailed analysis for this A remark is in order here. When applying the stream
scenario can be found in (Waydo and Murray 2003b)f,nction method, the dimension of the circular obsta-
A plot of the streamlines passing through the obstaclgje js typically chosen to be bigger than that of the real
’ Yy obstacle for the sake of safety. So if any robot happens
to get onto aSP, although it will stay but it will not
collide with the obstacles. An example is given in
the left plot of Fig.3, one of the robots (the middle
one) stopped at one of ti&Ps. To solve the problem,

3.2 Avoidance of Multiple Obstacles

If there be multiple circular obstacles in the fluid, then
we need to solve the Laplace’s equation with multiple methods such as adopting certain random walking al-
boundary conditions. This is undoable analytically. gorithms when reaching 8P can be incorporated.
But basic ideas from single obstacle avoidance can However, in this paper, we will use concepts from
still be implemented by using method called addition hydrodynamics to reach a solution for this problem.
and threShOlding, detailed information can be found in In fluid mechanics, the Comp|ex potentia] of vertex
(Waydo and Murray 2003a) and (Waydo and Murray f, = Ciln(z) applies to the circulation motion of fluid
2003b). An example is given in Fig.2. In the simula- between two concentric cylinders. Adding this to the
tion, three circular obstacles are placed in an uniform complex potential of a circular obstacle in certain
flow and a sink is induced to act as the goal. types of flow, it will change the positions of stagnation
points (Milne-Thomson, 1968). Here is a brief analy-
sis based on the earlier example of a circular obstacle

in a uniform flow: Addingpiln(g) tow=Uz+U a—zz

Fig. 3. Stagnation Point Problem

20097

Fig. 2. Avoidance of Multiple Obstacles

Fig. 4. Stagnation Points Shifting
. 2
4. STAGNATION POINTS the new complex potential becomes=Uz+UZ +

. . iCIn(Z2). As can be seen when= a€?, w=2Ua, the
As discussed in (Waydo and Murray 2003a) and imagianary part ofw is constantd. which means the

(Waydo and Murray 2003b), one main advantage of 1, ,ngary of the cylinder is still part of the streamline.
using stream functions is the absence of local extrema, 14 find the new positions of the stagnation points
which means the situations of robots stop at local min- ’
ima when using thé&PF method would not happen. "
But there is another problem which still needs to pay Sclution can then be found as

attention to: theStagnation Point$SP). As at anySP, 2=a( iC L)1 c? )
the velocity of the fluid becomes zero and if a robot 2au 4222
happens to get onto a stagnation point, it will forever So the positions of stagnation points will be decided

stay there. by the relationships between C aald (Currie, 1993).

by applying (8) we can geaé +2€ _1-0. The

aau

©)

Here is a simple example @P. from (7), suppose
the right side of both equations equal to zero, i.e., t
velocity of the fluid becomes zero:= 0 andv = 0.

Then by solving the equations[1 — f—i(xz -y =

he Case 1: IfC < 2aU, SUPPOSES; = sinB. Thenz =
a(—isinf 4+ cosP), so the stagnation points lie on the
cylinder below the center.

2 . L Case 2: IfC = 2aU, thenp = Z, this time the stagna-
0,U £ 2xy=0, we can find the solutiong:= —a,y =0 tion points coincide at the bottom of the cylinder.
andx = a,y = 0, which are pointA andC in the left

plot of Figure 1. So at these points the fluid will come Case 3: IfC > 2aU, suppose,5; = cosh,thenz =

to rest. Similarly, it's easy to show in the right plot of  ai(— cosh3 +sinhB) = —aie*P, calling the two solu-
Fig.1 A and C are also stagnation points. SincERg tionsz, andz, then|z;z,| = &. this time the stagna-
the velocity of the fluid becomes zero, the equation tion points are inverse points on the y-axis(imaginary
for calculating stagnation points can be expressed asaxis), and one of the SP is inside the obstacle cylinder.
(Currie, 1993): Plottings of all three cases are shown in Fig.4

dw
E =0 (8)



It can be seen from above analysis that for those addedndicated in Fig.5) and each robot has a limited sensor

vertex flows with different strengt@ the positions of
correspondingPs are also be different, so if a vertex
flow with its strength a function of time is added, then
the SPs would keep changing with time. Therefore
once a robot gets onto@P, next step when it updates
its position, it will be out of theSP. This will help
the robots which happen to get or®s to get out of
them. An example is given in the right plot of Fig.3,
there a vertex flow with its strength a sine function is
addedC = Ksin(wt) with K = 1.5aU. It can be seen
the robot which is supposed to stopS# now has no
trouble to pass the obstacle.

5. SWARM NAVIGATION USING STREAM
FUNCTIONS

In the real world, phenomena of insects or birds ag-
gregating and flocking in swarms are very common.

Swarm systems can exhibit diverse adaptable beha\:{A problem with this strategy is that the robots may

iors such as split, rejoin and squeezing maneuvers. |

this paper the scenario of interest is the navigation
of a swarm such as a school of fish passing through

a water course with reefs to their spawning place.

range.

Simple Superposition A natural (and naive) scheme
to facilitate swarm navigation based on stream func-
tions would be a superposition: Let the streams "carry"
every robot to the "catchment area” while at the same
time apply the interaction forces between neighbor
robots to keep the group as a swarm.

For example, when considering a swarm navigating
in an uniform flow with only one obstacle in the
origin, the model can be expressed #s= U[1 —

2 N i i . 2
2 0¢ —3)] + 5L, 904 —xd) andsh = UK 2ax +

Z:-\":l g(x, —x%). HereN; is the number of robot within
the sensor ranger of ageintA more general expres-
sion can be written as:

X = Xiflow + Xiswarm (11)

collide with the obstacles due to the extra "pushing or
pulling effects" among every robot in the effort to stay
together in a swarm. See Fig.7 for such an example.

Similar research can be found in (Saber and Murray, Simple Superposition with Switching To solve the
2003) and (Saber, 2004), therein models of nets andproblem of the preceding section, one strategy is to
flocks are discussed based on the graph theory andntroduce switching control, i.e., once a robagets

different types of agenta( 3 andy) are designed to

close to any obstacle, stop the swarm control for all

solve the problem of flocking in the presence of mul- the robots. Then since every robot will now only keep
tiple obstacles. Here we present a general frameworknavigating along streamlines, no collision with the
that judiciously combines the stream function based opstacles will happen. Simulation result as shown in

method with dynamic swarm models for coordinated
swarm navigation.

5.1 Swarm Modeling

Fig.8 indicates that when using this switching method
no collision happens.

Adding Repellent Profile for Obstacles Using the

The basic idea to model a swarm system is to expressSWitching method can help avoid collision with obsta-
the mutual attractive and repulsive effects between cles, butitintroduces added complexity in the control
every agent in the swarm. So far many methods have@lgorithm and may also lead to nonsmooth motions.

been brought forward and in this paper the model

For instance, in Fig.8, it can be seen roBdbllows

developed in (Gazi and Passino, 2004) and (Gazi andits own streamline and becomes separated from other

Passino, 2003) will be used. In (Gazi and Passino,

2004) the model considers a swarmMfindividuals
in an n-dimensional space. Here we will consider the
situation whem = 2.

Suppose the position of an individual ageérdan be
described ag' € R2. The equation of motion for each
individual agent is (Gazi and Passino, 2004) :

X =—-0,0(X)+ gx —x),i=1,..,M(10)

j=1]#i

0 : R — R represents the attractant/repellent profile
of the environmentg(-) represents the function of
mutual attraction or repulsion between individuals and

is an odd function of the forng(x) = —x[ga(||X||) —
gr(|IXID]- The function in (Gazi and Passino, 2004) is

2
a(x) = —x[a— bexf =2L%)] and it will also be used
in this paper. To avoid confusion with (9), we rewrite

2

it as:g(x) = —X[ky — keexg{ =X1)]. Detailed analysis
of g(x) can be found in (Gazi and Passino, 2004) and
(Gazi and Passino, 2003).
5.2 Swarm Navigation Based on Stream Functions
As motivated by swarm phenomena in nature, in this

robots.

As the reason for a robot to collide with an obsta-
cle when using the simple superposition is due to
the pushing and pulling effects from other robots,
therefore another method is to add repellent effects
for all the obstacles, once a robktgets close to a
obstacle, then the repulsive effect from the obstacle
will try to balance the interactions ok from other
robots, and thus avoid the obstacle-agent collision. To
do this, we just need to add thel, o(X') term back

to (10). But at this time, the added term will only be
used to represent obstacles. In this paper, the Gaussian
type function from (Gazi and Passino, 2004) is used:

2
o(x) = -4 exd—%) +bg. Now (10) can be
rewritten as

X = )-(Iflow+xlswarm+ Xlobs (12)

As the reason for adding the repellent profile for an
obstacle is to balance the pushing or pulling effects
from other robots, so the scope for this term to be
effective should be confined within a limited range. If
the radius of the circular obstacleasthen the range
for Oyxo(x) would beRrep = ma Usuallyl <m< 1.5.
The simulation results is shown in Fig.9.

paper we assume each robot only interact with thoseNavigation with Connectivity Testing: In (Gazi and

that are in front of it along the navigating direction (as

Passino, 2004 and 2003), the algorithm assumes that



every robot will interact with all the other robots, i.e.,

the robots are fully connected. It can be seen this as-

sumption to some extent overlooks the information of
obstacles when building the inter-robot connections.
In this paper, we introduce a more natural algorithm
called navigation with connectivity testing or naviga-
tion with line of sight (OS) connectivity to take into
account the presence of obstacles.

Navigation with connectivity testing means for any
robot i, other robots within its sensor range are to
be tested for suitable connectivity, i.e., only when
the connecting line between robatand j does not
go into any obstacles, can robptbe considered as
a neighbor fori. This means any robot will only
interact with the robots which are within its sensor

range as well as light on sight (i.e., no obstacles be-

tween interacting robots). The idea of connectivity
testing stems from the so-called probabilistic Road
Map method PRM)in which testing the connectivity

between randomly generated nodes is a very importan

process. More information can be found in (Kavraki
and Latombe, 1998), and (Guargt, al, 2003). A

definite advantage of connectivity testing is that for
every robot the chance of being pushed or pulled to

obstacles is greatly reduced. Suppose the set of robot

Fig. 5.Line of Sight Connectivity

within the sensor range of robois .#]' and the robots
within sensor range dfbut the connecting lines with

i will goes into obstacles is72, then when calculat-
ing Xyarm ONly X € K —KJ will be considered. For
example, in Fig.5,7] = {1, 2 4,5}, ) ={2,4}, so
for roboti only robotl and5 will be conS|dered If
K}, = Ki, thenx) € 0, if robot i is not within any
effective range of the obstacles, then the governing
equation will be simplified a8 = X}, as no stream-
lines will go into obstacles, so the robot can safely
keep marching along the streamline till it find other
robots.

Navigation with Probabilistic Connectivity: Again
looking for inspiration from nature, for example in

(1) 3/3

dsi=6
p(5)=2/5

5
>

Fig. 6. Probab|l|st|c Connectivity

Every time when agemtupdate its position, it will cal-
culate thexi,.,mterm only by choosing! = x™ with
probability Pr(choose m For example, in Fig.5, the
neighbors for robot are robotl and5. The distances
dy'! = 4 andds' = 6, using (13), the probability for
robot1 and5to be considered afer(choosel) = 3/5
andPr(chooseb) = 2/5 respectively, now robatgen-
erates a sample of a random variaBlg. which is
gnlformly distributed betweei0,1]; for example, if

45 is the number generated, as it is witfiy0.6], so
robot 1 will be selected; if the number is 0.8, since it
is within [0.61], then robot5 would be selected. The
designed algorithm means any robot would put more
emphasis upon closer neighbors, far away ones will be
&8lso be considered but with a smaller possibility. This
algorithm is more natural and it further decreases the
possibility for a robot to collide with obstacles since
in most situations the effect between two "connected"”
robots will not likely go through obstacles.

6. SIMULATION RESULTS

In this section, simulation results are shown to illus-
trate the effectiveness of the algorithms discussed in
the proceeding section. Fig.7 to Fig.9 are the snap-
shots of simulation results of simple superposition,
simple superposition with switching, and adding re-
pellent profile for obstacles, respectively. For all three
simulations, there are two circular obstacles with ra-
dius1and centered 40,2) and(0, —2) in an uniform
flow with strengthU = 2. The initial positions of all
the robots are same for all these simulatigqns3, 5),
(—3,0.5), (—2.5,-6), (—2.5,0) and (—2,—1). For
simulation resultin Fig.9, the parameters for the added
repellent profiles areAs1 = Ag2 = 65, c51 = (0,2),

Co2 = (0,—2), g1 = lg2 = 1.1. Fig.10 and Fig.11 are
snapshots of simulation results of navigation with con-
nectivity testing and navigation with probabilistic con-
nectivity. In both simulations, there are five obstacles
located at(—6,0), (—5,5.6), (—2,—3.5), (5,5) and
(5,—5) with radius2.2, 1.3, 1.6, 4 and4. The initial
positions of 15 robots are randomly generated but for
comparison they are copied and used in both simu-
lations. The strength of the uniform flow & = 16,

marathon, the most possible action for an athlete to sensor range for every robot18. The added profile
take is to catch up with the nearest runner in front for the obstacles ak,; = (380,380,380,2980 2980,
of him. So another algorithm, namely "Navigation cC; is just the center of obstacles ahgd equals 1.5

with Probabilistic ConnectivityPC", is designed as
follows: Suppose for robat the set of robots which
are within the sensor range ioédnd also have suitable
connectivity withi is {. | 5', &', ...s'}, the distances
toiis {2 |di',dy,...dy'}, then the probability for
agent j to be chosen as a partner for robot i to follow
is expressed as:

1

A’

> ()

Pr(choose m= (13)

| M
A

times the radius of every obstacle.

7. CONCLUSIONS

In this paper, we extend the stream function based nav-
igation method to a framework for coordinated motion
control of autonomous swarms. The stagnation point
problem associated with stream functions is identified
and a hydrodynamics based analytical solution is pro-

vided. For swarm navigation, novel concepts such as

navigation with connectivity testing and probabilistic
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Fig. 10.Swafm Navigation with Connectivity Testing

Fig. 11.Swarm Navigation with Probabilistic Connec-
tivity

, connectivity are introduced. Extensive simulation re-

sults illustrate the effectiveness of the proposed frame-
work. Research is underway for further in-depth anal-
ysis of the proposed framework.
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