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Abstract: Nonlinear dynamic systems of Hammerstein type are identified from
input and output measurements. Identification algorithms for a memoryless
nonlinear part and for a linear dynamic part are proposed. Convergence and
rates of convergence of the algorithms are investigated. The class of nonlinearities
considered in the paper is very large and cannot be parameterized therefore
nonparametric approach is used. The performance of identification algorithms is

studied in simulation experiments. Copyright
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1. INTRODUCTION

Identification of nonlinear dynamic system is one
of the fundamental problems of system theory.
The two general identification techniques use ex-
pansions involving Volterra kernels and Wiener
G-functionals. In the Volterra kernels expansion
a nonlinear, dynamic system with input z(¢) and
output y(t) is represented by a generalized convo-
lution y(¢) =Y 02y [ oo [ (71, ey )zt —T1) ..
z(t — 1,)dm...T,, where h, is the Volterra ker-
nel of order n (Sansone, 1980). The method of
G-functionals, introduced by Wiener admits the
description of nonlinear, dynamic system by the
infinite series y(t) = Y oo o Gn(kn(7),2(7);7 €
(—o0,t)), where G, are some functionals and kj,
are unknown kernels. Both methods are only ap-
plicable to smooth nonlinearities excluding such
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basic ones as hard and soft limiters and quantizers
and their practical usefulness is limited due to
excessive computational requirements.

An attractive alternative to general techniques is
the block-oriented approach in which identified
system is modelled by a cascade of simple func-
tional blocks identified from the input-output ob-
servations. A simple but important block-oriented
system is a sandwich system shown in Figure 1.
It consists of a nonlinear, memoryless system
sandwiched between two linear dynamic systems.
Sandberg (Sandberg, 1992) showed that linear
combinations of such systems can approximate a
causal and time invariant nonlinear system. Sand-
wich systems have been applied among others to
modelling of physiological systems (Marmarelis
and Marmarelis, 1978).
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Fig. 1. Sandwich system

The most important block-oriented systems which
can be derived from the sandwich system are the
Hammerstein system consisting of a zero-memory
nonlinearity followed by a linear dynamics (Fig-
ure 2), and the Wiener system consisting of a
linear dynamic system followed by a memory-
less nonlinearity (J.Bendat, 1990) (Figure 3). The
Wiener system has been applied to signal detec-
tion and communication by Masry and Cambanis
(Masry and Cambanis, 1980), modelling of neural
network structures by Sandberg (Sandberg, 1992),
and to modelling of biological systems (R. Emer-
son and Citron, 1992), (Hunter and Korenberg,
1986). The Hammerstein system identification
has been first studied by Narendra and Gallman
(Narendra and Gallman, 1982) followed by Chang
and Luus (Chang and Luus, 1971), Chung and
Sun (Chung and Sun, 1988) and Hsia (Hsia, 1977).
It has been applied to adaptive control by Kung
and Womack (Kung and Womack, 1984), to adap-
tive noise cancellation by Stapleton and Baas
(Stapleton and Baas, 1992), to design of nonlinear
predictors by McCannon et al. (T. McCannon
and Wise, 1982) and to identification of biological
systems by Hunter and Korenberg (Hunter and
Korenberg, 1986). A blind identification of Ham-
merstien and Wiener systems has been studied by
Bai (Bai, 2002). Comprehensive review of para-
metric nonlinear systems identification methods
is provided in (Haber and Unbehauen, 1990) and
references cited therein. All the papers mentioned
above consider single-input single-output (SISO)
systems with polynomial nonlinearities of fixed
degree. Identification procedures for the linear and
nonlinear parts are not independent and standard
non-smooth nonlinearities such as dead-zone lim-
iters, hard-limiters and quantizers are excluded.
The papers also lack rigorous convergence analy-
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Fig. 2. Hammerstein system

The limitations imposed by the previous authors
can be removed by using nonparametric approach
to identification block-oriented systems. Nonpara-
metric estimation received considerable attention
in statistical literature (Eubank, 1999), (L. Gyorfi
and Walk, 2002). The main advantage of this
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Fig. 3. Wiener system

approach is that we do not restrict nonlinearities
to a class of functions described by a finite number
of parameters, such as polynomials or trigonomet-
ric functions. The class of nonlinearities we are
capable to recover by nonparametric estimates are
all measurable Ly functions. This class includes
standard nonlinearities such as dead-zone limiters,
hard-limiters and quantizers and is too large to
be finitely parameterized. An elegant comparison
of parametric and nonparametric techniques is
provided by Hall (Hall, 1989). The most popu-
lar nonparametric techniques to date are kernel
methods and methods based on the Fourier se-
ries orthogonal expansion. The former approach
has been applied to memoryless block-oriented
system identification by Greblicki and Krzyzak
(Greblicki and Krzyzak, 1979) and Krzyzak and
Partyka (Krzyzak and Partyka, 1993), and to
Hammerstein system identification by Greblicki
and Pawlak (Greblicki and Pawlak, 1987) and
Krzyzak (Krzyzak, 1990). A recursive kernel ver-
sion has been studied in (Greblicki and Pawlak,
1989), (Krzyzak, 1992). Identification algorithms
based on the Fourier series expansions have been
studied in Greblicki (Greblicki, 1989) and Krzyzak
(Krzyzak, 1989), (Krzyzak, 1996). Kernel tech-
niques do not work particularly well for periodic
excitations whereas Fourier series approach is only
applicable to inputs restricted to a bounded set.
Continuous-time Hammerstein system identifica-
tion has been studied by Greblicki (Greblicki,
2000).

In the present paper we identify dynamic Ham-
merstein systems by the algorithms based on
the Hermite series expansion with the number
of terms depending nonlinearly on the number
of input-output measurements. We assume that
Hammerstein system is driven by a stationary,
white noise. We estimate the linear and nonlinear
components simultaneously from the input and
output observations of the whole system using
the correlation method to identify the linear sub-
system coefficients and nonparametric Hermite
series regression estimate to recover the mem-
oryless nonlinearity. We study convergence and
convergence rates of the identification algorithms.
Computer simulations of identification algorithms
are presented and discussed.

The Hermite approach presented in this paper has
clear advantages over kernel and Fourier series
approaches. Unlike kernel approach it has modest



storage requirements, that is we need to store
only N coefficients instead n data measurements
in case of kernel algorithms, where N = o(n).
The Hermite series method is applicable to the
systems with input domain R, while the Fourier
series method can only be used to identify systems
with inputs restricted to finite intervals. Although
Hermite series estimate is smooth for a finite
number of measurements it can asymptotically
approximate non-smooth nonlinearities such as
thresholds and limiters. For a class of nonlineari-
ties and input densities with finite Hermite series
expansions (e.g of the polynomial type) the Her-
mite series identification approach offers better
rates of convergence than the kernel and Fourier
series methods.

2. HAMMERSTEIN SYSTEM

The outline of discrete Hammerstein system is
given in Figure 2.

The nonlinear subsystem (I) is described by

where X, is R-valued stationary white noise with
distribution g and &, is a stationary white noise
with zero mean and finite variance o2. No corre-
lation is assumed between &, and X,,. Assume for
simplicity that ¢ is a scalar function. The linear
subsystem (II) is described by the ARMA model:

Yon+aYo 1+ +aYny
=bWp +b01Wyq1 +---+ W,

where [ is the order of the system (not as-
sumed known). Coefficients ay,---,q; guarantee
the asymptotic stability of the system, i.e. the
roots 1, - - -, py of the associated polynomial equa-
tion 2! + a1 2!71 + - + @ = 0 satisfy ;] < 1,i =
1,---,1. These conditions imply that Y;, is weakly
stationary as long as W,, is weakly stationary.
Subsystem II can be described by state equations.

Xpy1=AX, + bW,

Y, =c"X, +d\W, (2)
where

01 _ _0— ap
A= aT 0= a = :
. _0_ ai

- (17

h1 0
b=|:|e=|.|di=ho

hy | 0]

ho = bo, hi = b; — Zajhl—j;
j=1

i=2,-,l,n=0,+1,---

X, is an l-dimensional state vector, while A is
assumed to be asymptotically stable (i.e. eigenval-
ues of A lie inside a unit circle). These conditions
imply that X,, and Y,, are weakly stationary as
long as W, is weakly stationary. By (2)

E{Yn|Xn} = dip(Xn) +a=m(Xn)  (3)

where a = E¢(X)cT (I — A)~Lb.

From equation (2) we obtain an IIR representa-
tion

Vo= kiWn_; (4)
7=0

where kg = dy # 0,k; = cTA*1bi=1,2,--- and
Yoo [kil < oo guarantees asymptotic stability of
the linear subsystem. It follows from (4) that

E{Yann} = k0¢(Xn) + ﬁ

where 8 = E¢(X) 32| k.

The estimation problem is well defined if Y,, and
X, are random variables in the L, sense, p > 1.
This is the case if II is asymptotically stable and

EWP < . (5)

Equations (1), (5) and assumptions on X,, imply
that W, is weakly stationary. Condition (5) holds
if E€P < oo and either

¢ € Ly(p) (ie. Elp(X)]” < o0) (6)
or

¢(z) < P(|z]) and E|X|”® < 0 (7

where P is a polynomial of order s. Observe that
condition (6) is weaker than (7) and that it is
satisfied for a random variable X with arbitrary
distribution. Asymptotic stability of II and (6)
imply that o and (8 exist. Restrictions (6) and
(7) on nonlinearity are totally independent of the
estimation algorithms discussed in this paper. It
is obvious that the class of Borel functions satis-
fying (6) or (7) is so large that it cannot be pa-
rameterized. It contains nonlinearities with jump
discontinuities such as dead-zone limiters, hard-
limiters, smooth-limiters and quantizers. This is
the reason we use the nonparametric approach to
estimate ¢.



3. IDENTIFICATION ALGORITHMS AND
CONVERGENCE

To estimate both ¢ and the linear subsystem pa-
rameters the Hammerstein system we will use the
sequence {(X;,Y;)},i=0,1,---,n—1 of n depen-
dent observations of the input X and the output Y’
of the whole system. In order to estimate the im-
pulse response function {k;},j = 0,1,--- we will
use the correlation approach. Asymptotic stability
of the system implies that k; -+ 0 asn — oo.
Therefore we can assume that for j greater than
some threshold N the kg-s are negligible and we
can estimate the finite set of N parameters. We
obtain from (4)

pi;n = cov{Ynyi, Xn} = ki/kocov{Yy, X} (8)

where cov{Yy, Xn} = Ed(Xo)Xo.
If E¢(Xo)Xo # 0 then (8) yields
2 4=1,---,N. (9)

k; = kopinpon/|pon

We define the following estimate of k; motivated
by (9):

kisn = kopinpo,n/|po,nl?

where
1 n—1
ﬁz,n . Z(Yi+1 - Y)(X] - X)
=0
n—1 n—1
_ 1 = 1

n “ n <

=0 =0

Since Y, is a weakly stationary process then
pin — cov{Yny;, Xp} in probability as n — oo.
Hence we have

Lemma 1. If (6) holds, the linear, dynamic sub-
system is asymptotically stable and E¢(X)X # 0
then

kin — k; almost surely

asn—>o0,i=1,2,---,N.

In order to estimate the cross-correlation function
v; of the linear subsystem, notice

vi = cov{Sn+i, Wn}/cov{Sn, Wy, }
=k;i/ko,i=1,---,N.
We can estimate v; by
Yin = ﬁi,nﬁO,n/|ﬁ0,n|2i =1---,N.
In order to recover ¢ we first estimate the regres-

sion function m defined in (3) by the kernel re-
gression estimate. The presence of undetermined

coefficients d; and « in (3) is a consequence of the
fact that the signal W,, is not accessible for the
measurements. It would be possible to determine
dy and « if ¢(z1) and ¢(z2) were known for some
z1 and z at which m,(z) were consistent and
¢(x1) # ¢(x2). Then we could estimate d; by:

dy = My (21) — M (22)

’ P(z1) — P(z2)

and a by:

GV
¢(z1) — p(z2)

an = myp(z1) — (mn(z1) — mp(22))

Using (3) and the formulas above we define an
estimate of ¢ by

() = (Mn(2) — an)/dn,1.

Similarly to estimating regression function ® in
section 3 we can estimate m by the Hermite series
estimate

_ >, YiDn(z, X;)
Z:’L:l DN('TJXi)

(10)

My ()

where (X1,Y1),-..,(Xn,Y,) be observations of an
R? x R-valued random vector (X,Y) and E|Y| <
00. In the theorem below we will consider the con-
vergence of algorithm (10). Let g(z) = ®(z) f(x).

Theorem 1. Let EY? < oo, A be asymptotically
stable, and f,g € Lo. If N satisfies

N = > (11)
N/n—0 (12)
then
mp(z) = m(x) in probability

as n — oo for almost all x.

If, in addition, t.(-) = (z — d/dz)"(-) € Lo for
some integer r > 0 for both f, g, then

|mp(x) —m(z)| =0 (n_2<22r’“_+11)) in probability

for almost all  for optimal N = n?/(r+1)

Remark 1. If condition (12) in Theorem 1 is
strengthened to

N/nlogn — 0asn — o0 (13)

then

mn(x) = m(z) almost surely

as n — oo for almost all z. If f and g satisfy
the smoothness assumptions of Theorem 1 then



(13) implies |, (u) — m(u)| = O (n—ﬁ’le/logn
almost surely for almost all z for optimal N(n) =
(n/logn)t/(r+1/2),

4. SIMULATION EXPERIMENTS

In this section we present simulation results for
identification of Hammerstein systems. We focus
our attention on recovering static nonlinearity.

We simulated Hammerstein system from Figure 2
using two nonlinear functions, fi(z) = sinz and
f2(x) = (signz + 1)/2 in the intervals [a1,b1] =
[—0.8,0.8] and [a2, b2] = [—1, 1], respectively. The
input xz, was generated uniformly in [a;, b;],i =
1, 2. The impulse response of the linear system was
set to k; = e~*. We tested both systems for six dif-
ferent sample sizes, n = 30, 50, 100, 200, 500, 1000,
and three different noise levels o¢ = 0.01,0.1,0.2,
where £ was zero mean Gaussian. Figure 4 shows
two examples of individual experiments.
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Fig. 4. Results of individual experiments. (a) n =
100, N = 50, o¢ = 0.01, fi(z) = sinz, (b)
n = 1000, N = 120, o, = 0.2, fo(z) = signz.

The experiments show that the identification al-
gorithm is rather robust in terms of the choice of
order of the Hermite kernel. This made it possible
to choose N(n) uniformly over different nonlin-
earities and noise levels, only as a function of n
so that the corresponding error terms L(n, N(n))
were relatively small in each experiment (see Ta-
ble 1). Although in real applications the nonlin-
ear function is obviously unknown, our experi-
ments suggest that practitioners have a relatively
free choice of the order of the Hermite kernel.
As a guideline, we fitted a logarithmic function
(321logn — 100) to the empirical function N(n).

Table 1. The chosen order of the Her-
mite kernel as a function of the data
size.

n 30 50 100 200 500 1000
N 16 20 50 70 100 120

Our experiments show the average mean square
error does not depend strongly on the random
noise &, between the nonlinear and the linear
components of the Hammerstein system. For each
of the 36 combinations of parameters (two non-
linearities, six data sizes, and three noise levels),

we carried out 100 experiments, and we computed
the pointwise averages

100

NN e e
fla) = 100;%’ (),

and pointwise standard deviations

1/2
100 /

o) = | 55 L6 @) ~ S

The results of the individual experiments are
shown in Figure 5 and Figure 6.

(sign(x) + )2 —
f(x)
e s e
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Fig. 5. n = 1000 (a) o¢ = 0.2. (b) o¢ = 0.01.

08 06 04 02 o 02 04 06 08-08 06 04 02 0 02 04 06 08

(
Fig. 6. n = 1000 (a) o¢ = 0.2. (b) o = 0.01.

5. COMMENTS AND CONCLUSIONS

In the paper we considered nonparametric identi-
fication of Hammerstein systems by the nonpara-
metric Hermite series regression estimate. Identi-
fication algorithms have been proposed and their
convergence and the rates investigated under very
mild restrictions on the measurements and pa-
rameters. One important problem not considered
in the paper is data-dependent selection of al-
gorithms parameters. There are many powerful
statistical techniques for optimizing parameters.
They include cross-validation and bootstrap (see
(Efron and Tibshirani, 1993) for a comprehensive
discussion). Application of these techniques to
adaptive selection of parameters in our algorithms
is left for the future work.
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