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Abstract: A new design method of output feedback type tracking sliding mode
control (SMC) is proposed in this paper. Stability of the control system and the
tracking performance to the reference input are achieved by using the parallel
feedforward compensator (PFC), which guarantees almost strict positive realness
(ASPR) of the plant, and the so-called internal model. Effectiveness of the method
is shown through an experimental liquid-level control of the process. Copyright
c©2005 IFAC
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1. INTRODUCTION

The sliding mode control (SMC) scheme has been
applied to many industrial fields because of its su-
periority concerning robust control performance.
From the viewpoint of its possibility of practi-
cal realization, SMC is expected to become more
widely applicable control techniques. The design
procedure of SMC system is divided into two
stages. The first phase is to choose a set of switch-
ing surfaces such that the original system is re-
stricted to the intersection of the switching sur-
faces. The second phase is to determine a switched
control law that forces the system’s trajectory to
and maintains it on the sliding surface (V.I.Utkin,
1978). Unfortunately, most conventional methods
in SMC employ either full state or estimated
state feedback so that they may be impractical or
overly complicated to implement. From the out-
put feedback viewpoint, there have been several
proposals concerning static output feedback and
dynamic output feedback. For linear systems with
no uncertainty, the problem of switching surface
design using output information has been investi-
gated (B.Diong and J.Medanic, 1992) . For uncer-

tain systems, an algorithm for output-dependent
switching surface design, which is based upon
eigenvector methods, has been discussed by Hui
and Zak (S.Hui and S.Zak, 1993) and Zak and
Hui (S.Zak and S.Hui, 1993). Bag et al. (1997) in-
dicated that the switching surface design problem
can be reduced to an output feedback problem
and gave the necessary and sufficient condition
in terms of the system structure for a stable re-
duced order motion to exist. A common design
methodology appears in the work of Heck et al.
(1995). Elkhazali et al.(1995) is based on synthe-
sizing a static output feedback gain numerically to
ensure the so-called reachability condition. As an
extension of the work by Edwards and Spurgeon
(1995), a sliding mode controller synthesis proce-
dure based on a linear matrix inequality (LMI)
optimization has been proposed (C.Edwards and
S.K.Spurgeon, 2001). On the contrary, Ohtsuka et
al. (2003) have proposed a different design proce-
dure by using a parallel feedforward compensator
(PFC). The design method is based on the almost
strict positive realness (ASPR) of the plant and
the PFC is utilized to realize the ASPR of the



minimal phase plant. The above stated idea was
originally used in the design of simple adaptive
(SAC) systems (Z.Iwai and I.Mizumoto, 1994).
In this case, the sliding mode switching surface
can be specified by an augmented plant output
with PFC which guarantees the almost strict pos-
itive real characteristics of the augmented plant.
This approach was also adopted by Ohtsuka et
al.(2004) to construct the output feedback servo
control for practical electromechanical systems.

In this report, a new control procedure is proposed
which is an extension of the work of Ohtsuka et al.
(2004) and is based on an internal model principle.
The method has the following attractive features:
1) The design technique is easy for designing the
servo control system and the obtained controller
structure is simple. 2) The SMC can be realized
without time derivative of the plant output signal.
3) The chattering phenomenon can be suppressed
by introducing an integral action.

This paper is organized as follows. Section 2
presents the problem formulation. Section 3 de-
scribes the scheme of a new controller and dis-
cusses the stability of the proposed SMC system.
Section 4 shows a concrete and practical control
system construction method using PFC. An ex-
perimental result is included in Section 5 to illus-
trate the design procedure and to demonstrate the
effectiveness of the proposed approach.

2. PROBLEM FORMULATION

Consider the following controllable and observable
SISO linear system:

ẋ(t) = Ax(t) + bu(t), (1)

y(t) = cTx(t), (2)

where x ∈ Rn, A ∈ Rn×n, b, c ∈ Rn×1. The
problem to be discussed is a construction of a
sliding mode control system which can achieve
the tracking of output y(t) to the reference input
r(t) by output feedback type. Suppose that r(t)
satisfies the following differential equation which
is known as an internal model:

Da(s)r(t) = 0, (3)

Da(s) = sρ + d1s
ρ−1 + · · ·+ dρ. (4)

Here s denotes the differential operator.

Define z(t), v(t) and the tracking error e(t) as

z(t) = Da(s)x(t), (5)

v(t) = Da(s)u(t), (6)

e(t) = y(t)− r(t), (7)

z(t) ∈ Rn , v(t) ∈ R1, e(t) ∈ R1.

Then operating Da(s) for both sides of (7) and
considering (3) lead to the following equation:

Da(s)e(t) = cT z(t), (8)

or
e(ρ) + d1e

(ρ−1) + · · ·+ dρe
(0) = cT z(t), (9)

where e(0) = e(t) and e(i) denotes the i-th time
derivative of e(t) (i= 0· · ·ρ). From (1),(5),(6) and
(9), we can obtain the following equation:
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In the above system, the tracking error e(t) and
the extended input v(t) are designated as the
output and input, respectively. For brevity, the
above equations are rewritten as follows:

d

dt
x̄(t) = Āx̄(t) + b̄v(t), (12)

σ(t) = c̄T x̄(t). (13)

In this case, we have

c̄T b̄ = 0. (14)

That is, the relative degree is equal or greater
than 2 so that the output feedback control has
no effect upon the system in (12) and (13). To
improve the situation, we introduce the following
parallel feedforward compensator(PFC):

d

dt
xf (t) = Afxf (t) + bfv(t), (15)

yf (t) = cT
f xf (t), (16)

where xf ∈ Rnf , Af ∈ Rnf×nf , bf , cf ∈ Rnf×1.
Hence we have the following extended plant:

d

dt
xa(t) = Aaxa(t) + bav(t), (17)

σ1(t) = σ(t) + yf (t) = cT
a xa(t), (18)

where

xa =
[

x̄
xf

]
, Aa =

[
Ā 0
0 Af

]
,

ba =
[

b̄
bf

]
, ca =

[
c̄
cf

]
.



Assumption 1
Extended plant (17) with output σ1(t) and input
v(t) is ASPR.

It is noted that the system in (17) and (18) is said
to be ASPR if the corresponding transfer function:

Ga(s) = cT
a (sI −Aa)−1ba (19)

satisfies the following ASPR conditions (E.Zeheb,
1986):

(1) The relative degree is 0 or 1.
(2) The leading coefficient is positive.
(3) The numerator of Ga(s) is Hurwitz.

It follows that

cT
a ba = cf bf > 0, (20)

by Assumption 1.

3. SLIDING MODE CONTROL LAW AND
STABILITY

Let us consider the following control law:

v(t) = − 1
cT
a ba

(
cT
a Aaxa(t) + ksgnσ1(t)

)
. (21)

Here the relay gain k = k(xa, t) ≤ k0 is a design
parameter and sgnσ1(t) is defined as the following
function:

sgnσ1(t) =





1 (σ1 > 0),
0 (σ1 = 0),
−1 (σ1 < 0),

(22)

where k0 is an positive constant. The control
law (21) is known as the ultimate sliding mode.
Namely, the state trajectory of (17) is drawn to
the switching hyper plane from an arbitrary initial
point and also held on it once the state trajectory
reaches to the surface.
Theorem
Under Assumption 1, the control law in (21) with
relay element (22) attains the relation:

lim
t→∞

e(t) = 0 (23)

Proof :
Let us consider the positive definite function

V (t) =
1
2
σ1(t)2 (24)

as a candidate Lyapnov function. Then

d

dt
V (t) = σ1(t)σ̇1(t)

= σ1(t)(cT
a Aaxa(t) + cT

a bav(t))

= σ1(t)
{
cT
a Aaxa(t)− cT

a Aaxa(t)

−ksgnσ1(t)}
=−k|σ1(t)|
≤ −k0|σ1(t)| < 0(σ1(t) 6= 0). (25)

Thus, the trajectory of state (17) reaches the
sliding mode switching hyper plane σ1(t) = 0, that
is

lim
t→∞

σ1(t) = 0 (26)

The behavior of the trajectory on the hyper plane
σ1 = 0 can be analyzed by the equivalent linear
control method (J.A.Burton and A.S.I.Zinober,
1986). In this case, we have σ̇1(t) = 0. Then, we
have

cT
a Aaxa(t) + cT

a bav(t) = 0 (27)

Thus, the equivalent linear control input is given
as

veq(t) = − 1
cT
a ba

cT
a Aaxa(t). (28)

Substituting (28) into (17) yields

ẋa(t) =
(

Aa − 1
cT
a ba

bacT
a Aa

)
xa(t)

= Âaxa(t). (29)

The eigenvalues of Âa consist of the n−1 zeros of
the extended system in (17) and (18) and a single
zero on the origin of the complex plane. Hence,
according to Assumption 1, (29) is stable (O.M.E.
El-Ghezawi and Zinober, 1983), that is,

lim
t→∞

xa(t) = 0, (30)

or

lim
t→∞

e(0) = lim
t→∞

e(t) = 0. (31)

4. ON THE CONCRETE CONSTRUCTION
OF CONTROL SYSTEM

4.1 Construction of the Control Input u(t)

The term cT
a Aaxa(t) in (21) can be rewritten as

follows:

cT
a Aaxa(t) =

[
c̄T cT

f

] [
Ā 0
0 Af

] [
x̄(t)
xf (t)

]

= c̄T Āx̄(t) + cT
f Afxf (t)

= e(1) + cT
f Afxf (t)

=
d

dt
e(t) + cfAfxf (t). (32)

From cT
a ba = cT

f bf and (32), the control input in
(21) is given by
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Fig.4.1 Reference model filter

v(t) =− 1
cT
f bf

(
de(t)
dt

+ cfAfxf (t) + ksgnσ1(t)
)

.

(33)

It is emphasized that the input v(t) can be con-
structed by measurable variables y(t), r(t), yf (t)
and xf (t) and time derivative ẏf (t). From (6), u(t)
can be described by

u(t) =
1

Da(s)
v(t). (34)

It means that the reference model filter, repre-
sented by 1/Da(s), generates the real input u(t)
from v(t).

In (33), v(t) includes the time derivative ė(t)
or the time derivative ẏ(t). If the latter sig-
nal can not be measured, it is often calculated
from y(t) by some approximation, e.g., the Eu-
ler method, or the differential circuit. However it
commonly amplifies the influence of calculation
errors and/or measurement noises. This situation
can be avoided in case that Da(s) has the follow-
ing form:

Da(s) = sDa1(s), (35)

Da1(s) = d1s
ρ−2 + · · ·+ dρ−1, dρ = 0.

Because, in this case, we have

v(t) = v1(t) + v̇2(t), (36)

v1(t) =− 1
cT
f bf

(
cT
f Afxf (t) + ksgnσ1(t)

)
, (37)

v2(t) =− 1
cT
f bf

e(t), (38)

(see Fig 4.1(b)). It is noted that the chattering
problem may also be improved by passing through
v1(t) at least an integrator. Furthermore, the
chattering problem can be improved more by
using some conventional countermeasure as σ-
modification (K.K.D.Young, 1993).

Da(s)

�v(s) σ(s)

yf(s)

�

Gp(s)
σ1(s)

�

Gf(s)

Fig.4.2 Augmented plant with PFC

4.2 Construction of PFC

From (5),(6) and (8), we have

σ(s) = e(s) =
1

Da(s)
Gp(s)v(s), (39)

where σ(s),e(s), and v(s) are Laplace transforms
of σ(t), e(t) and v(t), respectively. Gp(s) denotes
the transfer function of the controlled plant in (1)
and (2):

Gp(s) = cT (sI −A)−1b. (40)

The PFC can be described by the transfer func-
tion form:

Gf (s) = cT
f (sI −Af )−1bf . (41)

Hence, the ASPR of the augmented system,

Ga(s) = Gp1(s) + Gf (s), (42)

Gp1(s) =
1

Da(s)
Gp(s), (43)

must be kept to satisfy Assumption 1 (see Fig.4.2).

Let Gp(s) be given as

Gp(s) =
kpNp(s)
Dp(s)

, (44)

where Dp(s) and Np(s) are monic polynomials
with n-th order and m-th order, respectively, and
kp is a leading coefficient. Then,

Gp1(s) =
kpNp(s)

Da(s)Dp(s)
(45)

can be regarded as an extended system involving
the internal model of the reference input with
relative degree γ = n + ρ−m. It is apparent that
the zeros of Gp1(s) is determined by zeros of the
originally controlled plant Gp(s). Hence, under
the assumptions that kp > 0, γ is known and
Np(s) is Hurwitz polynomial, the ladder network-
type PFC (Fig.4.3), which has been proposed
by Iwai et al. (Z.Iwai and M.Deng, 1994), is
considerably useful to realize an ASPR augmented
plant. In this case, Gf (s) can be designed as
follows:
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Fig.4.4 Modification of PFC

Gf (s) =
γ−1∑

i=1

δiGfi(s), (46)

Gfi(s) =
βi

di(s)
, (47)

di(s) =
γ−1∏

j=1

(s + αi), (48)

δ : small positive constant

βi : coefficients of Hurwitz polynomial:

βγ−1s
γ−1 + · · ·+ β1s + kp.

Then there exists a positive constant δ0 such that
Ga(s) becomes ASPR for δ as δ0 > δ > 0.

4.3 Modification of PFC in case of (35)

The input of PFC, designed in the preceding
subsection 4.2, can be constructed by using the
time derivative of y(t) as mentioned in subsection
4.1. To avoid this situation, we introduce v̄(t)
using (37) and (38) such that

v̄(t) =

t∫

0

v(t)dt =

t∫

0

v1(t)dt + v2(t). (49)

However, in this case, we need to modify the form
of PFC corresponding to the change of the input
to PFC. Let

Ḡa(s) =
1

Da1(s)
Gp(s), (50)

where Da1(s) is given in (35). In this case,
PFC Gf (s) is designed so as to make Gp1(s) =
1
s Ḡa(s) as an ASPR system by the abovemen-
tioned scheme shown in subsection 4.2. Fig.4.4
describes the connection between Ḡa(s) and Gf (s)
by block diagrams. It can be easily transformed to
an equivalent diagram in Fig.4.2 by the shift of the
feeding out point of the input for Gf (s). Since the
PFC has been described by (15) and (16), we need
to reconstruct it as

ẋf (t) = Afxf (t) + bf v̄(t), (51)

ȳf (t) = ẏf (t) = cT
f Afxf (t), +cT

f bf v̄(t) (52)

based on the above equivalent transformation of
the block diagram in Fig.4.4. As a result, we can
avoid using the time derivative of the plant output
y(t) and realize the output feedback type sliding
mode control system in case of (35).

5. EXPERIMENTAL RESULTS

Here the proposed method is applied to a process
control example in order to examine the con-
crete design procedure and to confirm the control
performance. Fig.5.1 shows a schematic diagram
of the experimental equipment with three tanks.
The operational input is the volume of inflowing
water of tank-2 generated by pump-1 and the
controlled value is the water level of tank-1 which
is indirectly measured by a pressure sensor. The
following transfer function:

Gp(s) =
13.29s + 0.6916

s2 + 1.654× 10−2s + 3.14× 10−5
(53)

of the plant was obtained from the step response
of the system by using the exponential analysis
method based on Plony’s method (Z.Iwai and
I.Torigoe, 2003). The control objective is to realize
the tracking of the output to the reference input
r(t) composed of the step signal and ramp signal.

5.1 Design of the SMC System

Since the reference input includes a ramp signal,
Da(s) is chosen as 1/s2. In this case, the relative
degree of Gp1(s) becomes 3. So, we chose the
2nd order PFC of which parameters are shown in
table 5.1. The switching gain function k(xa, t) is

Table 1. PFC design parameters

symbol: δ α1 α2 β1 β2

value: 0.1 10−4 10−4 103 104

chosen as k(xa, t) = k0 = 10−6. Fig.5.2 shows an
experimental result. We can see sufficiently good
control performance: the switching function σ(t)
approaches zero and the output tracking of y(t)
to the reference input with both of ramp and step
signals is also attained.

6. CONCLUSION

We have proposed a design scheme of output
feedback sliding mode tracking controllers by us-
ing a parallel feedforward compensator which has
been used in the design of simple adaptive control
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Fig.5.2 Experimental result

systems. Stability of the control system is guar-
anteed under the assumption that the original
plant is minimal phase and the relative order is
known. Several design techniques are derived on
the concrete construction of the controller. The
effectiveness of the proposed method was con-
firmed through experimental results on a liquid-
level control process. In this experiment, the con-

trolled system, which is consisted of the connected
three tanks, was approximated as 2nd order trans-
fer function based on the step type response, in
spite of that it must be originally characterized as
3rd order non-linear differential equation from its
structure. Therefore, it has to be emphasized that
this experimental result shows the the robust-ness
of the proposed output feedback type SMC sys-
tem for structural uncertainties of the controlled
plant.
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