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Abstract: A class of dynamic discrete systems (control systems) with unknown 
parameters is considered. The unknown parameters are assumed to be values of uncertain 
variables described by an expert in the form of certainty distributions. The method of an 
estimation (evaluation) of the certainty index that the system is stable is presented and 
stabilization problems based on such an estimation are formulated. The analogous 
approach for the system with uncertain and random parameters is described. The method 
of a parametric optimization considered as a specific decision problem is proposed. 
Simple examples illustrate the presented approach. Copyright © 2005 IFAC 
 
Keywords: uncertainty, uncertain dynamic systems, stability analysis, robust stability, 
stabilization, robustness. 

 
 
 
 

 
1. INTRODUCTION 

 
There exists a great variety of formal descriptions of 
uncertainties and uncertain systems (see e.g. (Klir 
and Folger, 1988; Yager, 2002)). The idea of 
uncertain variables, introduced and developed in 
recent years, is specially oriented for analysis and 
decision problems in a class of uncertain systems 
described by classical models or relational 
knowledge representations with unknown parameters 
characterized by an expert (Bubnicki, 2001a, b, 
2002, 2004). It has been shown how to apply the 
uncertain variables in stabilization and optimization 
problems for a class of uncertain control systems 
(Bubnicki, 2003a, b). The purpose of this paper is to 
present new problems and results in this area: 
1. The application of so called C-uncertain variables 
which permits to use an expert’s knowledge in a 
better way. 2. A new approach to the stabilization 
problem. 3. An extension of the considerations for 
the systems containing uncertain and random 
parameters in one mathematical model. 4. A new 

method of a parametric optimization based on the 
uncertain variables.  
 
In recent years, a considerable amount of works have 
been devoted to different problems of uncertain 
control systems, including problems of stability and 
stabilization, and an idea of robust control (e.g. 
(Amato, et al., 1998; Zhang and Mizukami, 1999; 
Bubnicki, 2000; Krstic and Hua, 1998; Qu, 1998) 
and the references therein). Roughly speaking, 
considerations in these works are based on non-
probabilistic descriptions of an uncertainty in the 
form of a given set of unknown parameters and/or a 
given set of nonlinearities. A new idea described in 
(Bubnicki, 2003a, b) and developed in this paper 
consists in using the description of unknown 
parameters given by an expert in the form of so 
called certainty distributions characterizing his/her 
opinion on different approximate values of these 
parameters. The approach is not related to any 
particular stability conditions or any particular 
formulations of a quality index, but shows how to use 



  

the known stability conditions and the forms of 
quality indexes to the stability estimation, 
stabilization and parametric optimization based on 
the uncertain variables. The methods of the stability 
estimation and stabilization for two cases are 
described in Sec. 3 and 4, and the method of a 
parametric optimization, strictly related to the 
previous considerations based on the uncertain 
variables, is shortly presented in Sec. 5. 
 
 

2. PRELIMINARIES 
 
A. Uncertain variables. Details concerning uncertain 
variables may be found in the book (Bubnicki, 2004). 

The uncertain variable x  is defined by a set of 
values X (vector space) and a certainty distribution 

)~()( xxvxh ==  given by an expert, where ]1,0[∈v  

denotes the certainty index that x  is approximately 
equal to x. In this paper we use so called C-uncertain 
variables and the certainty index )~( Dxvc ∈  that x  

approximately belongs to a set XD ⊂ . 
 
Definition 1. C-uncertain variable is defined by X, 

)(xh  given by an expert and  
 

)](max1)(max[
2
1)~( xhxhDxv

DXxDxc −∈∈
−+=∈ .        (1) 

 

B. Stability estimation. Consider a nonlinear time-
varying system described by 
 

nnnn sexcsAs ),,,(1 =+                    (2) 
 

where Ssn ∈  is the state vector, Ccn ∈  is the 

vector of time-varying  parameters, Xx∈ is the 
vector of unknown parameters which are 
characterized by an expert, Ee∈  is the vector of 
parameters which may be chosen by a designer; 

kRS = , C, X and E are real number vector spaces, 

the matrix  kk
nnij RexcsaA ×∈= )],,,([ . Assume that 

for every Cc∈ , Xx∈  and Ee∈  the equation 

sexcsAs ),,,(=  has a unique solution 0=es  (the 

vector with zero components). The uncertainty 
concerning  nc  is formulated as follows 
 

cn Dcn ∈≥∀ 0                        (3) 
 

where cD  is a given set in C. 

 
Definition 2. The uncertain system (2), (3) (or the 
equilibrium state es ) is globally asymptotically 

stable (GAS) iff for every sequence nc  satisfying (3) 

ns  converges to 0  for any 0s . 

 
Assume now that x is a value of an C-uncertain 
variable x  described by the certainty distribution 

)(xh  given by an expert. Let ),( exM  and ),( exG  

denote properties concerning x and e such that  
),( exM  is a sufficient and ),( exG  is a necessary 

condition of the global asymptotic stability for the 
system (2), (3), i.e. 
 

),( exM  → the system (2), (3) is GAS, 

the system (2), (3) is GAS → ),( exG . 
 
Then 
 

)()()( evevev cgcscm ≤≤                   (4)  

 

where )(evcs  denotes the certainty index that the 

system is GAS, )(evcm  and )(evcg  are the certainty 

indexes that the sufficient and necessary conditions 
are satisfied, respectively. 
 
 

3. STABILITY ESTIMATION AND 
STABILIZATION OF THE SYSTEM WITH 

UNCERTAIN PARAMETERS 
 
According to (1)  
 

)](max1)(max[
2
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)( xhxhev

mm DXD
cm

−
−+= ,      (5) 
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where )},(:{)},,(:{ exGXxDexMXxD gm ∈=∈= . 

Thus, for the known stability conditions ),( exM  and 

),( exG  it is possible to estimate the certainty index 

)(evcs  by the determination of the lower and upper 

bounds (5) and (6), respectively. Exactly speaking, 
)(),( evev cgcm  and )(evcs  denote the certainty 

indexes that for the given e the corresponding 
properties are “approximately satisfied”  or satisfied 
for an approximate value of x. In general, gm DD ⊆  

and mg DD −  may be called “a grey zone” which is 

a result of an additional uncertainty caused by the 
fact that ),(),( exGexM ≠ . The stabilization consists 

here in a proper choosing of the stabilizing parameter 
e by a designer who in this way may have an 
influence on the values )(evcm  and )(evcg . Let us 

introduce the index of the grey zone 
)()()( eveve mg −=δ  and take into account that 

usually there is a constraint EDe e ⊂∈  where eD  

is determined by a requirement concerning a quality 
of the system. The stabilization problem may be 
formulated in the following ways: 
1. Choose e maximizing )(evcm  subject to the 

constraint eDe∈ . 

2. Choose e maximizing  )(evcg  subject to the 



  

constraint eDe∈ . 

3. Choose e maximizing )(evcg  subject to the 

constraints eDe∈  and vevcm ≥)(  where 10 << v  

is given. 
4. Choose e maximizing )(evcg  subject to the 

constraints eDe∈  and δδ ≤)(e  where 10 << δ  is 

given. 
In the cases 3. and 4. the grey zone is included into 
the optimization problem in two different ways. Let 
us consider  a special case where x and e are one-
dimensional positive parameters and the conditions 

),( exM , ),( exG  are reduced to inequalities 

mbxe≤ , gbxe≤ , respectively ( mg bb ≥ ). In a 

typical case x denotes an unknown amplification 
factor of a control plant and e denotes an 
amplification factor of a controller in a closed-loop 
control system. Assume that 0)( =xh  for  α≤x  or 

β≥x   ( 0, >βα ), 1)( =xh  for zx =  and )(xh  is 

an increasing (a decreasing) function for zx ≤≤α   
( β≤≤ xz ). It is easy to show that (5)  is then 

reduced to 
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The function )(evcg  has an analogous form with gb  

instead of  mb .  Introduce the constraint ee≥  and 

denote the solutions of the problems 1. and 2. 

(maximization of cmv  and cgv ) by *
me  and *

ge , 

respectively. 
 
Theorem 1. Under the assumptions introduced 
above: 

a. For 
ββ
gm b

e
b

≤≤ , 

** , gm eee =  is any value from ],[
β
gb

e . 

b. For  
αβ
mg b

e
b

≤≤ , eee gm == ** . 

c. For αα
gm

b
e

b
≤≤  

*
me  is any value from ],[ e

bm

α
, eeg =* . 

 

Proof. According to the assumptions concerning 
)(xh , it follows from (7) and from the analogous 

formula for )(evcg  that )(evcm  is a decreasing 

function of e for 
αβ
mm b

e
b

≤≤  and )(evcg is a 

decreasing function of  e  for 
αβ
gg b

e
b

≤≤ . Then for 

αβ
mg b

e
b

≤≤  the both functions are decreasing what 

proves the case b. of the Theorem. The cases a. and 
c. follow from the fact that 1)( =evcg  for 

ββ
gm b

e
b

≤≤  and 0)( =evcm  for 
αα
gm b

e
b

≤≤ .   □ 

 
The method presented above may be applied to 
different stability conditions ),( exM  and ),( exG  

known from the literature.  The particular forms of 
the functions )(evcm , )(evcg  and )(eδ  may be 

determined for particular stability conditions, and 
consequently particular forms of the sets mD  and 

gD  used in (5) and (6). It is worth noting that for the 

estimation of csv not only a sufficient but also a 

necessary stability condition should be formulated. 
To illustrate the presented approach we may use the 
following conditions presented in (Bubnicki, 2000, 
2003a), based on the principle of contraction 
mapping (see e.g. (Bubnicki, 1968)): 
 
Theorem 2. If there exists a norm ||||⋅  such that  
 

,cDc∈∀  ,Ss∈∀      1||),,,(|| <excsA  
 

then the system (2), (3) is GAS. 
 
Theorem 3. If  
 

),(),,,(),(:{ exAexcsAexASsCcDc ≤≤∈∀∈=  

(8) 
 

where the inequality in (8) denotes the inequalities 

for the entries, all entries of AA+  are nonnegative 

and  
 

1||),(|| <exA                            (9) 
 

where ||||⋅  is one of the norms 
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11
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then the system (2), (3) is GAS. 
 
Theorem 4. Assume that all entries of A  are 

nonnegative. If the system (2), (3) is GAS then 
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Example 1. Consider the system (2) where 2=k , 
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with the uncertainty (8), i.e. nonlinearities and the 
sequence nc  are such that ,cDc∈∀ Ss∈∀  

ijijij acsaa ≤≤ ),(  and 0≥
ij

a . Applying the 

condition (9) with the norm ∞⋅ ||||  yields mbxe<  

where ),(max1 22122111 aaaabm ++−= . Applying 

Theorem 4 yields gbxe<  where 

),(min1
22122111

aaaabg ++−= . Assume that x  

is a value of C-uncertain variable x  described by a 
triangular )(xh  presented in Fig. 1. In this case, 

according to (7)  
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Fig. 1. Certainty distribution. 
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and )(evcg  has the same form with gb  in the place 

of mb . The functions )(evcm , )(evcg  and )(eδ  are 

illustrated in Fig. 2, for 5.0,2.0 == gm bb , .4.0=z   
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Fig. 2. Illustration of the results. 
 
 

The solutions of the problems 1. and 2. are such as in 

Theorem 1, with γα −= z , γβ += z . In case a. 

1=cgv , )(evv cmcm = . In case b. )(evv cgcg = , 

)(evv cmcm =  and according to (11) 

1)2)(( −−= ebb mg γδ . In case c. )(evv cgcg = , 

0=cmv . For the numerical data presented above, 

choosing eee gm == ** , we obtain the following 

estimation of the certainty index sv  that the system 

is GAS: 67.017.0 ≤≤ sv  for 1=e , 

86.025.0 ≤≤ sv  for 8.0=e , 166.0 ≤≤ sv  for  
4.0=e . The solutions of the problems 3. and 4. are 

the same as in the problems 1. and 2., under the 

conditions )(evv cg≤  and δδ ≤)(e , respectively. 

 
 

4. STABILIZATION OF A SYSTEM WITH 
UNCERTAIN AND RANDOM PARAMETERS 

 
The problem and method presented in Sec. 3 may be 
extended to a system containing two kinds of 
unknown parameters in its description: uncertain 
parameters described by certainty distributions and 
random parameters. Let us consider a system 
described by 
 

nnnn sewxcsAs ),,,,(1 =+  
 

where Xx∈  is a value of an uncertain variable x  
characterized by an expert in the form of the 
certainty distribution )(xh  and Ww∈  is a value of a 

continuous random variable w~  described by a 
probability density )(wf . In general,  w is a vector 

and  W is a vector space. Now the stability conditions 
),,( ewxM , ),,( ewxG  and the certainty indexes (5), 

(6) ),( ewvcm , ),( ewvcg  depend on  w. Consequently, 

for the stability estimation and the stabilization, 
expected values of the certainty indexes may be used, 
i.e.  
 

)],~([E)],~([E)],~([E ewvewvewv cgcscm ≤≤ .    (12) 

 
Thus, the expected certainty index that the system is 
GAS may be estimated by the lower and upper 
bounds )(eEm  and )(eEg  where 

 

∫=
W

cmm dwwfewveE )(),()( , ∫=
W

cgg dwwfewveE .)(),()(  

 
The stabilization problems may be formulated in the 
way analogous to that in Sec. 3, with )(eEm , )(eEg  

and δE ∆= )()()],~([E eEeEew mg −=δ  in the place of 

)(evcm , )(evcg  and )(eδ , respectively. In 

(Bubnicki, 2004) another version concerning 



  

uncertain and random parameters in a decision 
problem has been described:  w has been a random 
parameter in the certainty distribution given by an 
expert. The application of this description of the 
uncertainty to our considerations concerning the 
stability means that the system is described by (2) 
but the certainty distribution for x  has the form 

),( wxh  where  w is a value of a random variable w~  

described by )(wf . The consequence is the same as 

in the first version, i.e. according to (5) and (6) with 
),( wxh , the certainty indexes ),( ewvcm  and ),( ewvcg  

depend on  w  and the stability may be estimated by 
(12). It is worth noting that the presented versions 
have different practical (empirical) interpretations. 
 
Example 2. Consider the system described in 

Example 1 and assume that the parameter  z∆= w in 
the certainty distribution (Fig. 1) is a value of w~  
with an exponential probability density: 

wewf λλ −=)(  for 0≥w   and 0)( =wf  for 0≤w . 

The formula (11) may be rewritten in the form 
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Using (13) we may obtain )()()( 21 eEeEeEm +=  

where 
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The formula for )(eEg  has the same form with gb  

instead of mb . The functions )(eEm , )(eEg  and δE  

for the numerical data the same as in Example 1 and 

5.2=λ  are illustrated in Fig. 3. 
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Fig. 3. Stability estimation. 
 
 

5. PARAMETRIC OPTIMIZATION 
 
The uncertain variables may be applied to the 
evaluation of a quality of the system under 
consideration and to a parametric optimization based 
on a general approach to decision problems of 
uncertain systems using the uncertain variables 
(Bubnicki, 2004). Let us introduce a quality index for 
the system (2) in the form 
 

∑
=

=
N

n
nN sexQ

0

)(),( ϕ  

 

for the given 0s  and N, where )( nsϕ  denotes a local 

performance index, e.g. nnn sss T)( =ϕ  (quadratic 

form). Assume that x is a value of an C-uncertain 
variable x  described by )(xh . Then, for the 

requirement α≤),( exQN  where 0>α  is a given 

number, and according to (1) 
 

)](max1)(max[
2
1),(

]},0[~),({]
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)()(
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xhxhev

exQvexQv

eDXxeDxc

NcNc

xx −∈∈
−+==
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α
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(14) 
 

where }),(:{)( α≤∈= exQXxeD Nx . 

 
The optimal decision problem is formulated as 
follows: For the given ),( exQN , α  and )(xh  one 

should find the optimal parameter )(αe  maximizing 

the certainty index (14), i.e. the certainty index that 
the requirement is satisfied for an approximate value 
of x : 
 

),(maxarg)( αα eve c
e

= .                 (15) 

 

It is easy to note that for the given e, ),( αevc  is an 

increasing (in general, non-decreasing) function of 
α . Consequently, for the given desirable value cv  it 

is possible to determine the strongest requirement, 



  

i.e. the minimum possible value αα = , which 
should be determined by solving the equation  
 

]),([ ααevv cc =                          (16) 
 

with respect to α . Finally, a designer should 

determine the optimal value )(* αee = . Thus, the 

procedure of the parametric optimization presented 
here contains the determination of cv  (14), the 

maximization (15), the solution of the equation (16) 

and the determination of the final value *e . 
 
Example 3. To illustrate the presented method let us 
consider very simple example of one-dimensional 
feed-back control system containing a plant with the 
input nu  and the output ny , described by the 

equation  nnn xuTyy =−+1 , and a controller 

described by nn eu ε= . For nn y−=ε  the control 

system is described by the equation 

nn xeT εε )(1 −=+ . Then, for 1|| <− xeT   and 

10 =ε  
 

∑
∞

=

−
∞ −−==
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122 ])(1[),(
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n xeTexQ ε  

 

and the requirement α≤∞Q  is reduced to 
 

.)1()1( 1111 −−−− −+≤≤−− eTxeT αα  
 

Assume that )(xh  has the form presented in Fig. 1, 

with 5.0== γz . Using (14) we obtain  
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It is easy to see that Tee 2)( ==α  (it does not 

depend on α ) and )11(5.0),( 11 −− −+= αα Tevc . 

From the equation cc vev =),( α  we obtain 
122 ])12(1[ −−−= cvTα . For the numerical data 1=T  

and 9.0=cv , the results are as follows: 2* == ee , 

8.2=α . 
 
 

6. CONCLUSIONS 
 
The uncertain variables are proved to be a convenient 
tool for stability estimation, stabilization and a 
parametric optimization in a class of uncertain 
dynamic systems with unknown parameters 
characterized by an expert. In the case of C-uncertain 
variables the considerations are more complicated 
but the expert’s knowledge is used in a better way. 

The methods described for discrete systems may be 
applied to continuous systems in an analogous way. 
The presented approach may be extended to complex 
control systems considered as specific cases of 
uncertain systems with a distributed knowledge 
(Bubnicki, 2004). 
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