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Abstract: A class of dynamic discrete systems (@bnsystems) with unknown
parameters is considered. The unknown parameteesauened to be values of uncertain
variables described by an expert in the form ofadety distributions. The method of an
estimation (evaluation) of the certainty index tha system is stable is presented and
stabilization problems based on such an estimasicn formulated. The analogous
approach for the system with uncertain and randararpeters is described. The method
of a parametric optimization considered as a sjeciécision problem is proposed.
Simple examples illustrate the presented apprdachyright © 2005 IFAC
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1. INTRODUCTION method of a parametric optimization based on the
uncertain variables.

There exists a great variety of formal descriptiohs
uncertainties and uncertain systems (see e.g. (Klirin recent years, a considerable amount of worke hav
and Folger, 1988; Yager, 2002)). The idea of been devoted to different problems of uncertain
uncertain variables, introduced and developed incontrol systems, including problems of stabilitydan
recent years, is specially oriented for analysid an stabilization, and an idea of robust control (e.g.
decision problems in a class of uncertain systems(Amato, et al, 1998; Zhang and Mizukami, 1999;
described by classical models or relational Bubnicki, 2000; Krstic and Hua, 1998; Qu, 1998)
knowledge representations with unknown parametersand the references therein). Roughly speaking,
characterized by an expert (Bubnicki, 2001a, b, considerations in these works are based on non-
2002, 2004). It has been shown how to apply theprobabilistic descriptions of an uncertainty in the
uncertain variables in stabilization and optimigati  form of a given set of unknown parameters and/or a
problems for a class of uncertain control systemsgiven set of nonlinearities. A new idea described i
(Bubnicki, 2003a, b). The purpose of this papepis t (Bubnicki, 2003a, b) and developed in this paper
present new problems and results in this area: consists in using the description of unknown
1. The application of so callé@iuncertain variables  parameters given by an expert in the form of so
which permits to use an expert’'s knowledge in acalled certainty distributions characterizing hés/h
better way. 2. A new approach to the stabilization opinion on different approximate values of these
problem. 3. An extension of the considerations for parameters. The approach is not related to any
the systems containing uncertain and randomparticular stability conditions or any particular
parameters in one mathematical model. 4. A newformulations of a quality index, but shows how szu



the known stability conditions and the forms of
quality indexes to the stability estimation,

stabilization and parametric optimization based on

the uncertain variables. The methods of the stabilit

estimation and stabilization for two cases are
described in Sec. 3 and 4, and the method of a

parametric optimization, strictly related to the

previous considerations based on the uncertain

variables, is shortly presented in Sec. 5.

2. PRELIMINARIES

A.UncertainVvariables. Details concerning uncertain
variablesmay be found in the book (Bubnicki, 2004).

The uncertain variable x is defined by a set of
valuesX (vector space) and a certainty distribution
h(x) =v(Xx =x) given by an expert, where1[0]1]
denotes the certainty index that is approximately
equal tox. In this paper we use so call€duncertain
variablesand the certainty indeX/C(iﬁ D) that X

approximately belongs to a st X .

Definition 1. C-uncertain variable is defined by,
h(x) given by an expert and

~ :l _
V(XU D) 2[%%Xh(x)+l )én)?_é h(x)] .

1)

B. Stability estimation. Consider a nonlinear time-
varying system described by

Sn+1 = A(Sn,Cn. X, €)Sp (2)
where s, [0S is the state vectorc, OC is the

vector of time-varying parameterx[]X is the
vector of unknown parameters which are
characterized by an exper¢JE is the vector of

parameters which may be chosen by a designer;

s=RK, C, X andE are real number vector spaces,
the matrix A=[g; (S G X O] DRk . Assume that
for every cOC, xOX and edE the equation
s=A[SCx6s has a unique solutiors, =0 (the

h(x) given by an expert. LeM (x,e and G(x,e)
denote properties concerning and e such that
M(x,€e) is a sufficient andG(x,e )is a necessary

condition of the global asymptotic stability foreth
ystem (2), (3), i.e.

M (x,€) — the system (2), (3) is GAS,

the system (2), (3) is GAS G(x,€).

Then

4

Vem(€) < Ves(€) < Vg (€)

where vg(e) denotes the certainty index that the
system is GASy¢m(e Jand veg(€) are the certainty

indexes that the sufficient and necessary condition
are satisfied, respectively.

3. STABILITY ESTIMATION AND
STABILIZATION OF THE SYSTEM WITH
UNCERTAIN PARAMETERS

According to (1)

Vem(€) = 5 maxh(x +1- max h(x], (&)

m m

(6)

Veg (€) =1[maxh(x) +1- max h(x)]
2" Dy X-Dyg
where D, ={x0X:M(x €}, Dy={xOX:G(x€)}.
Thus, for the known stability conditiord (x,e and
G(x,€e) it is possible to estimate the certainty index

Ves(€) by the determination of the lower and upper

bounds (5) and (6), respectively. Exactly speaking,
Vem(€), Veg(€) and veg(e) denote the certainty

indexes that for the givere the corresponding
properties are “approximately satisfied” or saidf
for an approximate value af In general,Dy,, [ Dy

and Dy - Dy, may be called “a grey zone” which is
a result of an additional uncertainty caused by the

vector with zero components). The uncertainty fact thatM (x, €) # G(x, e ). The stabilization consists

concerning c, is formulated as follows

n=0 c,0ODg 3)

where D, is a given set ilC.

Definition 2. The uncertain system (2), (3) (or the
equilibrium state s,) is globally asymptotically

stable (GAS) iff for every sequenag satisfying (3)
s, converges ted for anys, .

Assume now thak is a value of anC-uncertain
variable x described by the certainty distribution

here in a proper choosing of the stabilizing patame
e by a designer who in this way may have an
influence on the valuescm(e qind veg(€) . Let us
introduce the index of the grey zone
o(e)=vg(e)-vn(e) and take into account that

usually there is a constraitl] Do O E where Dy

is determined by a requirement concerning a quality
of the system. The stabilization problem may be
formulated in the following ways:

1. Choosee maximizing v.y(e) subject to the

constrainted Dg .
2. Choosee maximizing vcg(€) subject to the



constrainte] D . b b

N . — <e<—2,
3. Choosee maximizing v¢q(€) subject to the decreasing function o for B =e= a Then for
constraintsed D, and v y(€) =v where0<v <1 b b . .
. € em(®) —2 <e<-M the both functions are decreasing what
is given. ] a

4. Choosee maximizing vgy(€) subject to the proves the case b. of the Theorem. The cases a. and

constraintse1 D, and J(e)sg where0<d <1 is c. follow from the fact that veg(€)=1 for

given. bn P _ ofor P el
In the cases 3. and 4. the grey zone is included in g ses B andvem(€) = Ofor a ses a
the optimization problem in two different ways. Let

us consider a special case wherande are one-  The method presented above may be applied to
dimensional positive parameters and the condltlonsdifferent stability conditionsM (x,e )and G(x.e)
M(x,€), G(x,e) are reduced to inequalities ’ '

xesbp, xesby, respectively by =bp). In a

|

known from the literature. The particular forms of
the functions vey(e ) veg(€) and d(e) may be
typical casex denotes an unknown amplification yetermined for particular stability conditions, and

factor of a control plant ande denotes an ;
e : consequently particular forms of the sdls, and
amplification factor of a controller in a closedo q ) yp i )
Dy used in (5) and (6). It is worth noting that fbet

control system. Assume th&(x)= for x<a or
x=2pB (a,B>0), h(x)=1 for x=z and h(x) is estimation of vognot only a sufficient but also a
an increasing (a decreasing) function foi< x < z necessary stability condition should be formulated.

(zsx<pB). It is easy to show that (5) is then 10 illustrate the presented approach we may use the
following conditions presented in (Bubnicki, 2000,

reduced to 2003a), based on the principle of contraction
b mapping (see e.g. (Bubnicki, 1968)):
0 for ex—1
b b b, Theorem 2. If there exists a nornj[|| such that
) 1
Vern(® = §h(?m) for TmseSF @
1_%h(%) for es%' OcODe, OsOS,  ||A(s,c x,e)|k1

then the system (2), (3) is GAS.

The functionvgq (€) has an analogous form witlrb Th 3 if
eorem 3.

instead of by,. Introduce the constraire>e and _
denote the solutions of the problems 1. and 2. D ={cOC:0sOS A(x€) < A(s,C X €) < A(X,€)
(maximization of v, and vgg) by e:n and e;, (8)

respectively. where the inequality in (8) denotes the inequaitie

Theorem 1. Under the assumptions introduced for the entries, all entries oA+ A are nonnegative

above: and
b _ b
a.For L<e<—, ~
B B A e)lk1 )
- _b .
€m =€, eq is any value fronie,%] i where||[]| is one of the norms
by by K K
b.For =—<e<™ e, =e, =€. Alk=max > |ai |, [|All,= max» |a; |, (10
5 5 m =8 [[AlL Jsisij:’,ll i 1 LA Ejgkél i 1, (10)
C.ror— ses—- then the system (2), (3) is GAS
. by, -, « -
e, is any value fron[rFm,e], eg =€. Theorem 4. Assume that all entries ofA are

nonnegative. If the system (2), (3) is GAS then
Proof. According to the assumptions concerning

h(x), it follows from (7) and from the analogous k K
) 0 ! ¢ 0j Ya (x9<1 and 00 Ya (xe<1.
formula for veg(e) that vey(e) is a decreasing i j=l_J
bm
B

. b .
function of e for <e<— and vgg(e)is a
a

Example 1. Consider the system (2) wheke= , 2



811(Sn,Cn) +X€ 12(Sn,Cn) Theorem 1, witha =z-y, f=z+y. In case a.
A(Sy,Ch, X, €) = . vcg=1, Ve =Ven(€) . In case b. vcg:vcg(é),

321(Sn.Cn) 322(Sn:Cn) * x€ Ve = Ver(€) and  according to  (11)
with the uncertainty (8), i.e. nonlinearities art t 5=(bg—bh1)(2}/é)_l- In case cC. Vg =Ve4(€),

sequence ¢, are such thatUcUD, ,0UsUS Vem =0. For the numerical data presented above,

3 <g(so<g and a, 20. Applying the choosing €, =€ =€, we obtain the following
condition (9) with the norm|[l||, Yyields xe<b,,
where by, =1-max(a;; +as1, a2 +3a). Applying
Theorem 4 yields xe< bg where

estimation of the certainty index; that the system
is GAS: 017<v,< 067 for  e=1,

025<v,< 086 for e=08, 066<v <1l for
by =1-min(a;, +a,,, a,,+a,,). Assume thak €= 04. The solutions of the problems 3. and 4. are
is a value ofC-uncertain variablex described by a the same as in the problems 1. and 2., under the
triangular h(x) presented in Fig. 1. In this case, Conditionngng(e) and 5(@)55, respectively.
according to (7)

h(x) 4. STABILIZATION OF A SYSTEM WITH

L UNCERTAIN AND RANDOM PARAMETERS
The problem and method presented in Sec. 3 may be
extended to a system containing two kinds of
unknown parameters in its descriptionncertain
parametersdescribed by certainty distributions and
random parameters Let us consider a system
described by

z-y z z+y X
Fig. 1. Certainty distribution. Sh1 = A8, Gy X W E)S,
where x[O0X is a value of an uncertain variable
0 for e> B characterized by an expert in the form of the
-y certainty distributionh(x )and wOW is a value of a
Vem(€) = b—m 4 for B <eg-_M continuous random variablev described by a
2l 2y zty E_ y probability density f(w ) In general, w is a vector
1 for es—m_ and W is a vector space. Now the stability conditions
zrty M(xw,€), G(xw,e) and the certainty indexes (5),
(11)

(6) Vey(wie), vcg(vv, e) depend onw. Consequently,

and vgq (€) has the same form withy in the place  for the stability estimation and the stabilization,

of by, . The functionsvey(€), veg(€) and d(e) are expected values of the certainty indexes may bd,use

ie.
illustrated in Fig. 2, foby, = 02, by =05, z= 04, N ~ _
< <
VemVogd EV, (W, ©)] < E[v (W, €)] < E[vcg(w, g]. (12)
14 1. Ve (©) Thus, the expected certainty index that the system
0.8l : > 5 Vccr;(e) GAS may be estimated by the lower and upper
0c) | i 3.56) boundsE, (e )and Eg(e)where
! =03
0.41 14
En® = [ Vo f Widw, E(©) = [ Voo &) f (widw.
0.21 | w w
I
0 B, bg 1 by 3 4 by € The stabilization problems may be formulated in the
24y 24y z-y Z-y way analogous to that in Sec. 3, wik, (e , P,Eg(e)
Fig. 2. lllustration of the results. and Es L E[ow, 0] = Eg(e)— E,@© in the place of

Vem(€), Vcg(€) and J(e), respectively. In

The solutions of the problems 1. and 2. are su¢h as (Bubnicki, 2004) another version concerning



uncertain and random parameters in a decisionA =25 are illustrated in Fig. 3.

problem has been describe# has been a random
parameter in the certainty distribution given by an
expert. The application of this description of the
uncertainty to our considerations concerning the
stability means that the system is described by (2)
but the certainty distribution fox has the form

h(x,w) where w is a value of a random variable
described byf(w ) The consequence is the same as
in the first version, i.e. according to (5) and {@)h
h(x,w) , the certainty indexes,, (w,€) and vcg(vv,e)

depend onw and the stability may be estimated by
(12). It is worth noting that the presented version
have different practical (empirical) interpretaton

Example 2. Consider the system described in
Example 1 and assume that the parametémw in
the certainty distribution (Fig. 1) is a value of
with  an  exponential probability  density:
fw=4eW for w=0 and f(w)= 0for w<O.

The formula (11) may be rewritten in the form

0 for zzb?mﬂ/
Ver(@ = ;h_z_y for %—yszs%+y (13)
1 for zs%—y.

Using (13) we may obtainE (6 =E(€)+E,e )
where

1- exp[—)l(bm ] for e< M
E(®) =

0 for e

rlf*g"

(o + DexpIAC - l-expEACE + )
+2—1y{exp[—A(%+m(%+y+%)
b
~expbACR - pin -+ 1y
E, )= for es%

o+ Di-expEACE + )

+2ly{exp[—A(%+m(;m+y+%)—%}

for ezh .
Yy

The formula for Eg(e)has the same form Witbg
instead ofb,,. The functionsE (e ) E (e) and E;

Em Eg. Es
1 1. Em (e)
2.E;()
0.8 9
7 3 3.E5(@)
0.6
04 3 ,
|
0.2 ! :
0 . . . .
bn1 P2 3 4 €

¥ ¥
Fig. 3. Stability estimation.

5. PARAMETRIC OPTIMIZATION

The uncertain variables may be applied to the
evaluation of a quality of the system under
consideration and to a parametric optimization dase
on a general approach to decision problems of
uncertain systems using the uncertain variables
(Bubnicki, 2004). Let us introduce a quality index

the system (2) in the form

N
Qn (x,€) = D #(sn)

n=0

for the givensy andN, whereg(s,, )denotes a local

performance index, e.ggzﬁ(sn):srfsn (quadratic
form). Assume thak is a value of arC-uncertain
variable X described by h(x ) Then, for the
requirementQy (x,€) <a where a > 0is a given
number, and according to (1)

vJQu (%8 < al=v{Qy(x & T[0al}
max h(xX)]

XIX-D,(©)
(14)

4 =1 _
=v.(ea)= 2[&% h(x) +1

where Dy (e) ={xOX:Qn(X,€)<a}.

The optimal decision problem is formulated as
follows: For the givenQp (x,e ) @ and h(x) one
should find the optimal parametefa) maximizing

the certainty index (14), i.e. the certainty index that
the requirement is satisfied for an approximate value

of x:

e(a) =argmaxv, (e a) . (15)

e
It is easy to note that for the givenv.(e a) is an
increasing (in general, non-decreasing) function of
a . Consequently, for the given desirable valgeit
is possible to determine the strongest requirement,

for the numerical data the same as in Example 1 and



i.e. the minimum possible valugr=a , which
should be determined by solving the equation
Ve =Vc[e(a),a] (16)

with respect to a. Finally, a designer should
determine the optimal value =e(a). Thus, the

procedure of the parametric optimization presented

here contains the determination of (14), the
maximization (15), the solution of the equation)(16
and the determination of the final valee.

Example 3. To illustrate the presented method let us
consider very simple example of one-dimensional

feed-back control system containing a plant with th
input u, and the outputy,, described by the

equation  Yn41 —Ty, =Xxu,, and a controller
described byu, =e¢,. For &, =-y, the control

system is described by the equation
Ent1 =(T—x8&,. Then, for |[T-xel<x 1 and
&o =1

Qu(x 8= 2 =[1-(T - xg 2]

n=0

and the requiremen®,, < a is reduced to

T -Vl-aDelsx< (T +y1-a 1)l

Assume thath(x )has the form presented in Fig. 1,
with z=y=05. Using (14) we obtain

T+v1l-al)el for ex2T
for es1-(T -+1-¢e7)
1-(T -v1-a1)el otherwise

V(% €) = 0

It is easy to see thae(a)=e=2T (it does not
depend ona) and v (€ a)=050+TWi-a).
From the equation v.(e,a)=Vv,
a =[L-T?(,-1)3 1. For the numerical data =1

we obtain

and v, = 09, the results are as follows=¢ =2,
a=28.

6. CONCLUSIONS

The uncertain variables are proved to be a conuenie
tool for stability estimation, stabilization and a
parametric optimization in a class of uncertain
dynamic systems with unknown
characterized by an expert. In the cas€-aincertain

parameters

The methods described for discrete systems may be
applied to continuous systems in an analogous way.
The presented approach may be extended to complex
control systems considered as specific cases of
uncertain systems with a distributed knowledge
(Bubnicki, 2004).
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variables the considerations are more complicated

but the expert’'s knowledge is used in a better way.



