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Abstract: This paper develops methodologies for an adaptive robust path tracking control 
of a nonholonomic Wheeled Mobile Robot (WMR) with nonlinear driving characteristics 
and unknown dynamic parameters. To solve the problem of position/orientation tracking 
control of WMR, a novel robust kinematics control law is developed to steer the vehicle 
to asymptotically follow the desired trajectories. To compensate for dynamic effects 
associated with the dynamic models, an adaptive backstepping path tracking control law 
with robustness is designed to ensure asymptotic path tracking for the vehicle with 
unknown dynamic parameters and changeable time-varying payload. Simulation results 
are included to illustrate feasibility and effectiveness of the proposed control laws.  
Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Wheeled mobile robots have been mainly excited by 
a wide variety of practical mobile robots applications 
due to their versatile abilities to work in various 
working domains. They have already been used in 
the fields of planetary exploration, materials 
transportation, military tasks, manufacturing 
servicing, hazardous environment, and mine 
excavation. To achieve the aforementioned tasks, the 
WMR requires intelligent sensing of the environment, 
intelligent trajectory planning, and high precision 
control. This desired autonomous or intelligent 
behavior has motivated an intensive research over 
the past decades.  
 
To achieve high-precision path tracking control for 
the WMRs, many sophisticated control approaches 
have been proposed by several researchers. These 
methods can be divided into two research paradigms. 
The first one started form Bloch et al. (1992), uses 
the discontinuous feedback whereas the second one, 
which was first investigated by Samson (1991), 
employs the time-varying continuous feedback. The 
existing tracking control methods for the WMRs 
include (i.) sliding mode control by Yang (1999); (ii.) 
nonlinear control by Kanayama, (1990); Samson, 
(1995); Jiang, (1997) (iii.) fuzzy control by Ollero, 
(1994); (iv.) neural network control by Boquete 
(1999); and (v.) adaptive backstepping control (Dixon, 
2001; Fukao, 2000). In 1999, Yang et al. used sliding 
mode control for tracking control, which is 
complicated and computationally expensive. The 

generated velocity command with respect to time is 
not a smooth curve in Yang (1999). Ollero et al. 
introduced the fuzzy tracking control approaches in 
1994. However, it is very difficult to formulate the 
fuzzy rules, which are usually obtained from the 
trial-and-error procedure. In 1999, computational 
intensive neural networks were adopted by Boquete 
et al. (1999), but the proposed algorithm requires on-
line learning in order to make the robot perform 
properly. Moreover, the literature on the robustness 
and the control in presence of uncertainties in the 
dynamical model of such systems seems to be rare. 
Recently, nonlinear control for this class of system 
has been studied more and more extensively. 
Kanayama et. al (1990) , Samson et al. (1995)and 
Jiang et. al (1997) have introduced several nonlinear 
control approaches for tracking control of mobile 
robots. In addition, when the uncertain model 
parameters in the real mobile robots occur, adaptive 
control policies have been proposed in (Dixon, 2001; 
Fukao, 2000).  
 
Most of the above approaches have been devoted to 
developing path tracking control laws without 
considering nonlinear characteristics, such as 
backlash and dead-zone. However, few have paid 
attention to designing robust control methods for a 
nonholonomic wheeled mobile robot (WMR) with 
such bounded, nonlinear driving characteristics in 
Oelen (2000). Nonlinear characteristics, such as 
backlash and dead-zone, can be extensively found in 
gear trains and driving mechanism for mobile robots. 



These characteristics usually have detrimental effects 
on path tracking accuracy. For example, it causes the 
control system to have nonzero steady-state errors. 
Another type of robust tracking control policy deals 
with the parameter uncertainties of dynamic models 
for mobile robots (Fukao, 2000). These parameter 
uncertainties usually come from changeable payload 
or aging components, and these aforementioned 
robust controller will exhibit desired tracking control 
performance if the upper bounds of the uncertain 
parameters are known in advance. 
 
To tackle with nonlinear driving characteristics, 
Oelen and Amerongen (2000) pioneered on the work 
by considering both linear and angular velocity dead-
zone bands occurring in kinematics models of two 
degrees of freedom mobile robots. However, this 
control method in Oelen and Amerongen (2000) 
cannot be directly derived using the well-known 
Lyapunov stability theory. By combing 
aforementioned adaptive and robust control 
methodologies, this paper attempts to use Lyapunov 
stability theory to develop  a novel, asymptotical, 
nonlinear adaptive robust path tracking control law 
for achieving path tracking goal and canceling the 
undesirable effects resulting from nonlinear effects 
and unknown dynamic parameters. These novel 
techniques can be expected to be useful and effective 
in controlling more general wheeled mobile robots 
with nonholonomic constraints and nonlinear driving 
characteristics. 
 
The remaining parts of the paper are organized as 
follows. Section II presents a novel path tracking law 
and Section III proposes a robust tracking controller 
for dealing with nonlinear characteristics from the 
kinematic models. Section IV designs an adaptive 
robust controller for overcoming unknown 
parameters associated with the vehicle’ dynamic 
models. In Section V simulation results are presented. 
Section VI concludes this paper 
 
 

2. KINEMATICS PATH TRACKING CONTROL 
LAW 

 
2.1 Problem Formulation 
 
It has been well known that, under the assumption of 
pure rolling, a kinematics model of the WMR shown 
in Fig. 1, is described by 
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where [ ] 3   ( ) Tx yq t Rθ= ∈  denote  the posture of the 
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Fig.1 Position and orientation of the WMR 

 
The aim of the path tracking design problem is to 
find a path tracking control law so as to keep the 
pose trajectories of the WMR asymptotically follow 
the desired posture trajectories given by 
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where [ ]  ( ) T

r r r rx yq t θ= .  To formulate the problem,  

let 1( ) ( ) ( )x t y t t Rθ ∈， ，
 be the errors between the 

actual and desired postures of the WMRs in the 
Cartesian frame, i.e.,  

x x xr= −  , y y yr= −  , rθ θ θ= −  
In what follows will develop a novel kinematics 
control law such that [lim ( ), ( ), ( )] [0,0,0]0

T Tx t y t tt θ →→ . 
 
 
2.2 Novel Asymptotical Path Tracking Design  
 
To achieve the path-tracking goal in asymptotical, we 
use a well-known globally invertible transformation 
given by (Dixon, 2001) 
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where 
1 2 3( ) ( ) ( )e t e t e t， ，

represent the tangential error, 
the normal (lateral) error and the orientation error, 
respectively. By differentiating (3) we obtain the 
error dynamics as follows,  
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Note that, from (3), if all the transformed errors 
1 2 3( ) ( ) ( )e t e t e t L∞∈， ，

, are continuous and bounded, 
then the original errors ( ) ( ) ( )x t y t t Lθ ∞∈， ，

 are 
bounded and continuous, it yields to show that 
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The basic idea of designing the proposed control law 
is based on two facts: (i) the lateral error 

2( )e t can 
not be directly controlled using the control vector 

[ ]TV υ ω=  ;(ii) if the lateral error 
2( )e t exits, then 



the orientation error 3( )e t will not approach zero. 
According to these two observations, one defines the 
following auxiliary variable )(3 te as 

233 )( eete α+=   (7) 
where Rα ∈ . In the sequel derives a novel control 
law to achieve kinematics path tracking. Taking the 
time derivative of )(3 te , it yields: 

3 3 2 1 3( ) ( sin )r re t e e e eα ω ω α ω υ= + = − + − +  (8) 
To stabilize the system (4), we propose the following 
control laws for υ  and ω  
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By substituting (9) into (4), we obtain the sequel 
equation: 

1 1 1 2 3sine k e e eω αω= − + −  
and substituting (9) into (7) yields 

3 2 3 3 3 2sgn( sin ) re k e e e eυ= − −  
Hence, the closed loop error system is summarized 
as belows 
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To show the asymptotical stability of the closed-loop 
error system, one finds the following Lyapunov 
function candidate  

2 2
1 1 2 3

1 ( ) (1 cos )
2

V e e e= + + −  (11) 

which leads to its time derivative expressed by  
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We substitute 1 2 3( ), ( ), ( )e t e t e t  and their derivatives 
into (12) and then obtain  
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Based on the Barbalat lemma, )(1 te  and )(3 te  
approach zero when time goes to infinity, i.e., 
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Next, we show that )(2 te  approaches to zero when 

time goes to infinity. Since  0lim 3 =
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If ( )lim 0trt
υ ≠

→∞
 for 0≥t , 2lim ( ) 0 

t
e t

→∞
= can be 

obtained. Similarly, if ( )lim ( ) 0tt rt
ω ω= ≠

→∞
, 

then ( )lim 02e t
t

=
→∞

. Note that all the stable 

equilibrium points, [0 0 2 ]Tnπ n I∈ , have the 
orientation errors, 2nπ  , thereby implying that they 
have the same physical orientation. Hence, we intend 
to claim that the proposed path tracking controller 
makes the wheeled mobile robot always follow the 
desired trajectories if ( )lim 0trt

υ ≠
→∞

 . 

 
Theorem 1 Assume that ,  ,    and  r r r rυ υ ω ω  are 
continuous and bounded on the time interval [0, )∞ . 
Then all the trajectories of the system (4) with the 
proposed control law of Eq.(9) are locally uniformly 
bounded. Furthermore, if ( )lim 0trt

υ ≠
→∞

 or 

lim 0rt
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→∞
, then ( )lim 01e t

t
=

→∞
, ( )lim 02e t

t
=

→∞
 

and ( )3lim 0e t
t

=
→∞

.  

 
Remark 1 For conservative choice of  α  in (9), it is 
constrained by  the following relation  

1 max
0 1/ eα≤ <     (14) 

 
Due to the fact that 1e L∞∈ and 1 1eα <  , 

11 0eα+ ≠  for any value of 1( )e t .  
Remark 2 If 0α = , the control law (9) becomes 
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3. ROBUST PATH TRACKING FOR 
ELIMINATING NONLINEAR DRIVING 

CHARACTERISTICS 

 
In order to achieve accurate path tracking control, the 
aim of this section is to develops a robust path 
tracking controller utilizing a vision-based system 
accompany together with the dead-reckoning system 
to eliminate nonlinear characteristics which caused 
by mechanical backlash in gear trains, dead-zone 
bands of the motor drivers. To facilitate the design 
process, we model the effects of nonlinear 
characteristics on the system behavior by considering 
the perturbed control error signal denoted 
by [ ] ,TVδ δυ δω=  V cδ

∞
≤ < ∞ , where δυ  denotes 

the difference between actual linear velocity and 
desired linear velocity, and δω  is the difference 
between actual angular velocity and desired angular 
velocity, and max{ , }Vδ δυ δω

∞
= . It can be easily 

note that the nonlinear characteristics will cause the 
system to have nonzero steady-state path tracking 
errors. Therefore, the closed-loop error system with 
the perturbed control errors becomes 
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Replacing 3e  with 3e  in (16) yields  
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In the sequel Lyapunov redesign is used to find a 
robust path tracking control law so as to reduce or 
even eliminate the effects of nonlinear characteristics 
on steady-state tracking errors. The discontinuous 
robust control law designed via Lyapunov redesign 
will completely cancel out the nonzero steady-state 
errors. To state the proposed robust control method, 
we decompose the control vector into two parts, i.e., 
V φ ψ= + , where ψ is an additional feedback control 
such that the overall control V  asymptotically 
stabilizes the system (4) in the presence of nonlinear 
driving characteristics. Here the control φ  is chosen 
as in the form of (9),  
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which leads to the following closed-loop error 
system with the matched uncertainties   
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Next, the additional control ψ  is designed such that 
the time derivative of the Lyapunov function (11) is 
negative semi-definite if 0rαυ ≥ . Thus,  
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where 
Tη  is given by  
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and  
Tη  satisfies the inequality 
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To accomplish the inequality (21), we choose  
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The following theorem summarizes the previous 
result.  
 
Theorem 2 Assume that, , , ,r r r r Lυ υ ω ω ∞∈ , are 
continuous and bounded on the time interval [0, )∞ . 
Then all the trajectories of the system (16) with the 
upper bound of the perturbed control 
errors, V cδ

∞
≤ , and the overall control yields 
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are globally uniformly bounded. Furthermore, if 
lim 0t rυ→∞ ≠  or lim 0t rω→∞ ≠ , then all the error signals 

1 2( ), ( ),e t e t and 3( )e t  asymptotically converge to 
zeros. 
 
Remark 3 The robust control law given by (24) is 
discontinuous due to the discontinuous signum 
function, thus resulting in the well-known chattering 
problem. This problem can be circumvented if the 
signum function is approximated by a continuous 
saturation function, i.e.,  
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However, such an approximation will cause the 
overall close loop system to have nonzero steady-
state tracking errors.  
 
 

4. ADAPTIVE BACKSTEPPING TRACKING 
CONTROL  

 
The objective of adaptive control for the WMRs with 
the dynamic model is to find an adaptive control with 
a set of parameter adaptation rules in order to achieve 
the aforementioned path tracking. The integral 
backstepping approach will be employed to yield 
such an adaptive control goal. In doing so, let the 
WMRs under consideration have the following task-
space dynamic equation  
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where 2V ∈ ℜ  denotes the control vector similarly 
defined in (1), 22 ×ℜ∈M  represents the constant 
mass and inertia matrix, ( ) 2F V ∈ ℜ  represents the 

friction effects containing dynamic and static 
frictions, ( ) 2ℜ∈tτ  denotes the torque input 

vector, and 2 2B ×∈ ℜ  is the input matrix that governs 
torque transmission. This above dynamic model can 
be expressed in the camera space by pre-multiply 
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To facilitate the subsequent adaptive controller 
design, we define an auxiliary signal defined in terms 
of the camera-space orientation, the velocity and the 
desired trajectory as follows 
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Now we rewrite (4) by substituting the auxiliary 
signal ( )u t , and then obtain the following 
expression 
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Since the backstepping technique will be used in this 
section to find the wanted torque input vector, we 
also define an auxiliary backstepping error signal, 
denoted by ( ) 2tη ∈ ℜ  as follows; 
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where ( ) 2u td ∈ ℜ  denotes the desired control input 
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system with the control law (9) 
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To obtain the torque input vector, we let the model 
(26) be linearly parameterized as follows 

NuMY +=00ϑ   (32) 

wher 0
pϑ ∈ ℜ  contains unknown constant mechanical 

parameters (i.e., inertia, mass, friction effects), and 
2

0
pY ×∈ ℜ  denotes a known regression matrix.  

Similarly, by replacing ( )u t  with ( )du t , one 
obtains 

NuMY dd +=00ϑ   (33) 

The torque input vector is proposed as 1
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where 1
1 2,k kη η ∈ ℜ  are positive constant control gains, 

( )idY 00ϑ̂  represents the ith entry of the vector 0 0
ˆ

dY ϑ  
for i=1,2. To accomplish the derivation of adaptive 
control, we propose a parameter adaptation rule for 
estimating ˆ

0ϑ  as follows; 

ˆ
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where 
0 0 1

p ptC C e ×−Γ = + ∈ ℜ  is a positive definite 

diagonal gain matrix where 0C  and 1C are two 

positive definite diagonal gain matrices. Then we 
develop close-loop error system for the auxiliary 
back-stepping error signal ( )tη . Premultiplying the 
signal ( )tη  by ( )M t , taking the time derivative and 
using (30) and (33), one has  

M Mu Mudη = −   (36) 
Furthermore, let the parameter estimate error signal 
be denoted as ˆ

0 0 0ϑ ϑ ϑ= − . Hence, (36) can be 

rewritten as  
M Mu Mudη = − 00Y Bd ϑ τ= −  (37) 

( ) 1 1 11
0 0 0 00 0 sin2 2 3

k e
M Y T B B Yd d k e

ηη
η ϑ τ ϑ

ηη

− +−= − − ⋅ = +
− +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (38) 
To show local bounded tracking property of the 
proposed adaptive controller, we choose the 
following Lyapunov function candidate 2V    

( ) ( )2
1 1 12 2 11 cos1 2 3 0 0 02 2 2

T TV e e e Mη η ϑ ϑ−= + + − + + Γ

     
 (39) 

Taking the time derivative of (39) by using (31) and 
go on the previous proof process, we obtain 

( )

1
2 2

12
2

1 1 1ˆsin1 1 2 2 3 3 0 0 0 0 0 0 0 0
2 2 2 1 1, sin 01 1 2 2 3 3 1 1 2 2 0 0 0 0 0

TT TV e e e e e e M

Tk e k e e e k k

η η ϑ ϑ ϑ ϑ

φ η η ϑ ϑη η

− − −= + + + − Γ − Γ Γ Γ

− −= − − − − Γ Γ Γ ≤−

Therefore, 2V  is always negative semi-definite. It 

follows that all the signals ˆ,  ,  ,     and  1 2 3e e e η ϑ  

are easily proven locally uniformly bounded. With 
the same arguments in the previous section, we claim 
that the proposed adaptive global path tracking 
controller makes the wheeled mobile robot always 
follow the desired trajectories with bounded errors if 

lim 0rt
υ ≠

→∞
 or lim 0rt

ω ≠
→∞

. 

 
Theorem 3 Assume that rυ , rυ , rω and rω  are 

continuous and bounded on the interval [0, )∞ . Then 
all the trajectories of the closed-loop error system 
composed of the torque control vector (34) and the 
parameter adaptation rules (35) are uniformly 
bounded. 

 
 

5. THE RESULTS OF SIMULATION  
 
The aim of the simulations is to examine the 
performance of the proposed adaptive robust control 
(34) and (35) for a mobile robot whose dynamic 
model is given by  

0

0 1 11

0 1 0 0 2

0 0 1 1sgn( )
0 0 /2 /2sgn( )

s
r

s

m F
I F l l

τυ υ
τω ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  



 
 

Fig. 2 (a) the results of tracking response with the 
reference line trajectory in x-y plot  (b) the results of 
error signals with the reference line trajectory 
 

 
 

Fig. 3 (a) the results of tracking response with the 
reference circular trajectory in x-y plot  (b) the 
results of error signals with the reference circular 
trajectory  
 
where their nominal values are specified by 

0 r =2.7056cm, 0 l =15cm, s1 F =0.3Nm, 

s2 F =0.3Nm, 0 m =2.6kg, 0I =12 2 kg-m . All the 
simulations were implemented using SIMULINK. To 
make the closed-loop system exhibit desired 
asymptotical path tracking responses, we choose 

0, 21 =ii OO [Pixels], 11 =α [Pixels], 12 =α [Pixels], 

0, 21 =oo OO [Pixels] and 00 =θ [rad], 

1 2 1 226,   2,   20k k k kη η= = = = .  
 
To perform different tracking simulations, we 
selected the desired initial position and orientation of 
the robot as ( inix , iniy , iniθ )=(5, 0, 1), and the 
actual initial condition (-50, -50, 1). Fig. 2 shows the 
simulated line path tracking trajectory, where the 
desire linear velocity and angular velocity are given 
by 2rv = m/s and 0rω = rad/s. Fig. 3 shows the 
simulated circular path tracking trajectory, where the 
desire linear velocity and angular velocity are given 
by and 4rv = m/s and  0.2rω = rad/s. The results in 
Fig. 2-3 indicated that the proposed control methods 
are shown effective for steering WMR to follow the 
desired reference trajectories. 
 
 

6. CONCLUSIONS 
 
This paper has developed methodologies for adaptive 
robust trajectory tracking control of a wheeled 
mobile robot with nonlinear driving characteristics 
and unknown dynamic parameters. The novel 
kinematics path tracking control law has been 
proposed in order to achieve asymptotical path 

tracking, and it has been successfully extended to the 
adaptive nonlinear tracking law for the robot 
associated with the dynamic model with unknown 
parameters. Through simulations, the proposed 
control laws have been successfully used to steer the 
WMR to follow the desired reference line and circle 
trajectories. An interesting topic for future research is 
to implement such control laws in a mobile robot and 
to physically verify the efficacy of the proposed 
control laws.  
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