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Abstract: We are concerned with the identification of static nonlinear maps in
a structured interconnected system. Structural information is often neglected in
nonlinear system identification methods. We take advantage of a priori structural
information and employ a nonparametric method of identification. We focus on
the case where the linear part of the interconnection is known and only the
static nonlinear components require identification. We propose an identification
algorithm and explore its convergence properties. Copyright c©2005 IFAC

Keywords: system identification, nonlinear systems, structured systems,
convergence, nonparametric nonlinearities

1. INTRODUCTION

This paper is concerned with identification prob-
lems in interconnected nonlinear systems. These
problems are of considerable importance in the con-
text of control, simulation, and design of complex
systems.

There is available limited past work on the iden-
tification of such systems on a case-by-case basis.
These include studies of Hammerstein and Wiener
systems (Billings and Fakhouri, 1978),(Narendra
and Gallman, 1966),(Pawlak, 1991). However, many
of the simplest problems here remain open. For
instance, the systematic inclusion of a priori struc-
tural information has been limited by the lack of a
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paradigm that is sufficiently general to incorporate
such information.

We believe that the development of generalizations
such as linear fractional transformations (LFT’s) in
the control systems literature (Packard and Doyle,
1993),(Safonov, 1982), together with the advent
of powerful, inexpensive computational resources
offer the promise of significant advances in system
identification for complex nonlinear systems.

Much of the available literature treats nonlinear
system identification problems in extreme general-
ity, for example using Volterra kernel expansions,
neural networks, or radial basis function expan-
sions (Billings and Fakhouri, 1978),(Boutayeb et
al., 1993),(Johansen, 1996),(Sjoberg et al., 1995).
However, it is our conviction that a completely gen-
eral theory of nonlinear system identification will
have little material impact on the many practical
problems that are of interest. We believe that it is
more beneficial to study specific classes of nonlinear
system identification problems, devise appropriate
systematic algorithms, and to study the behavior of



these algorithms. This experience can then be col-
lated together with experimental studies to develop
a broader theory.

We offer a systematic framework based on linear
fractional transformations to incorporate known
structural information about the interconnected
system. While there is occasional work that does in-
corporate a priori structural information (Narendra
and Gallman, 1966),(Stoica, 1981),(Vandersteen
and Schoukens, 1997), (Milanese and Novara, 2003),
this is not commonly the case.

In this paper, we are concerned only with the
identification of the static nonlinear components
in interconnected systems. We will assume that
the linear components of the interconnection are
known. In particular, we will be concerned with
problems in which the static nonlinear elements to
be identified are nonparametric.

The remainder of this paper is organized as follows.
In Section 2, we define the class of model structures
under consideration. In Section 3, we motivate
and present our identification algorithm. Section
4 introduces the dispersion function. In Section 5
we consider identifiability issues. We briefly discuss
convergence aspects of our algorithm in Section 6.
In Section 7, we investigate computational aspects
of our identification algorithm. In Section 8, we
offer an illustrative example. The proofs of our
main results can be obtained by contacting the first
author.

NOTATION

R
n standard Euclidean space

u, y, w, · · · vector-valued discrete-time signals
(finite or infinite)

yt value of signal y at time t
L length of data record
ΠL L sample truncation operator
e noise signal
LTI linear time-invariant
L linear time-invariant operator
N static nonlinear operator
z, w input and output signals of N
N {N : ‖N (ξ2) −N (ξ1)‖ ≤ γ‖ξ2 − ξ1‖}

N̂ faceted interpolant
N true “true” nonlinear map
D[L](z, w) dispersion function
Ωi ⊆ R

mi domain over which N [i] is to be
identified

Ω ⊆ R
m Ω1 × Ω2 × · · · × Ωb

AFi
area of facet Fi in faceted interpolant

2. PROBLEM FORMULATION

We are concerned with the identification of static
nonlinear maps in general structured intercon-
nected systems. An example of the class of struc-

tured systems we consider is shown in Figure 1.
Here, the static nonlinearities N1 and N2 are to
be identified. The possibly unstable LTI systems
L1 and L2 are known. We have access to the noisy
input-output data DL = {ut, yt}

L−1
0 and e is a noise

signal.
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Fig. 1. Example of structured interconnected sys-
tem

Any general interconnected nonlinear system may
be represented through a linear fractional transfor-
mation (LFT) framework as shown in Figure 2. The
LFT framework allows us to separate the LTI dy-
namics from the static nonlinearities in an intercon-
nected system. The signals u, y are measured, and
the signals z, w will denote the inputs and outputs
of the static nonlinear block N , respectively. The
signal e is a zero-mean white noise process.
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Fig. 2. LFT Model Structure

We gather all the nonlinearities of the intercon-
nection into the multi-input multi-output block N ,
which is to be identified. In general, the static
nonlinear block N has block diagonal structure
(Claassen, 2001)

N =











N [1]

. . .

N [m]











.

We partition the inputs z and outputs w of N
conformably with its structure. More generally, the
nonlinear block N may have repeated components.
This situation arises when a particular nonlinearity
appears more than once in the dynamical equations
describing the interconnected system. Without loss
of generality, all the component nonlinearities in N
can be assumed to be single output. This can always
be arranged by introducing redundant copies of the
signal z.

The frequently studied Hammerstein and Wiener
systems are special cases of our formulation. How-



ever, under our additional assumption that the lin-
ear components of the interconnection are known,
the identification of these classes of systems be-
comes trivial. Indeed, it is important to note that
the class of problems we wish to identify involve
complex interconnections. For example, consider the
system depicted in Figure 3.
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Fig. 3. Complexity in an interconnected system.

Here, the feedback interconnection along with the
presence of several multivariable linear and nonlin-
ear blocks suggests the complexity of the system.
Figure 3 also illustrates a situation where the mea-
sured output is the sum of the outputs of several
nonlinearities, as well as other signals. In order to
develop a systematic approach for the identification
of these systems, we use the LFT to collect all such
systems under a common framework for analysis.

We will refer to the interconnected system of Figure
2 as the LFT model structure. We assume that
the LTI block L and the dimensions of all signals
are known. The components of the nonparametric
nonlinear block N are to be identified. For this, we
have available measured (bounded) input-output

data {uk, yk}
L−1
k=0 .

Let us partition L comformably and realize it as

L =

[

Lyu Lye Lyw

Lzu Lze Lzw

]

∼







A Bu Be Bw

Cy Dyu Dye Dyw

Cz Dzu Dze Dzw






(1)

We summarize our principal assumptions below.

A.1 The realization of L in (1) is stabilizable and
detectable.

A.2 Measurability of z, i.e., there exists an LTI
system ΨM such that

[

Lze Lzw

]

= ΨM

[

Lye Lyw

]

. (2)

A.3 Co-measurability of z, i.e., there exists an LTI
system ΨC such that

[

Lze Lzw

]

= LzuΨC . (3)

A.4 There is no undermodelling. That is, there
exists N true ∈ N that generated the input-
output data {uk, yk}

L−1
k=0 .

A.5 The class of static nonlinearities we consider is
Lipschitz continuous. That is,

N = {N : ‖N (ξ2)−N (ξ1)‖ ≤ γ‖ξ2−ξ1‖, ∀ξ1, ξ2 ∈ Ω}.

We now make several comments regarding these
assumptions.

R.1 Note that we do not require L to be stable.
Indeed, L may be stabilized by the feedback
nonlinearity N .

R.2 Assumption A.2 is critical to our needs. Ob-
serve that

z =Lzuu + Lzee + Lzww

=Lzuu + ΨMLyee + ΨMLyww

=Lzuu + ΨM (y −Lyuu).

This is equivalent to requiring that z be mea-
sured, i.e., z can be inferred from u, y and L.

R.3 Assumption A.3 is the dual of Assumption
A.2. We do not require this assumption for our
identification procedure. We require this only
for our analysis on persistence of excitation.

R.4 Assumption A.4 ensures that there exists
N true ∈ N that generated the input-output
data set {uk, yk}

L−1
k=0 .

R.5 Assumption A.5 is made to restrict N to this
specific class of static nonlinearities. While our
identification algorithm does not require that
N be Lipschitz continuous, we require this
for our analysis regarding convergence of our
estimate.

3. THE IDENTIFICATION ALGORITHM

In this section, we describe our proposed identifi-
cation algorithm for general structured nonlinear
systems. In subsequent sections, we analyze this
candidate algorithm, address computational issues,
and offer an illustrative example.

We draw the reader’s attention to Figure 2, which
captures the system identification problem we con-
sider. Here, L is a known LTI discrete-time system,
and N is a nonparametric static nonlinear map
with known structure. The problem is to identify
the components of the static nonlinear map N .

We partition L conformably as

L ∼





Lyu Lye Lyw

Lzu Lze Lzw



 .

Notice that the observed input-output data imposes
an affine constraint on the signals w and e. We can
therefore parameterize the set of all signals (w, e)
consistent with the input-output data (u, y) as





e

w



 =





eo

wo



 +





Be

Bw



 f,

where
[

Lye Lyw

]





Be

Bw



 = 0.

Here, f is a free signal and (wo, eo) is a particular
solution.



The problem is then to select the free signal f .
There are two competing criteria that must be
considered in this selection. We should require that
the graphs from the (vector-valued) signals z to
w appear to be static nonlinear maps that are
consistent with the structure of the block N . In
addition, we should insist that this choice of f
results in a signal e that could likely be a sample
path produced from a noise process, consistent with
any a priori statistical information we may have.

To navigate these requirements we propose to se-
lect f as follows. Imagine we have a suitable func-
tion D[L](z, w) that processes the data {zk, wk}

L−1
k=0 .

This function returns a measure of how well we can
interpolate this data by a smooth, static nonlinear-
ity. Define the cost function

J [L](f) = D[L](z, w) + η‖ΠLe‖2.

where η is a weighting parameter. Here, L is the
number of samples in the data record being pro-
cessed. Notice that the signals w, z, e are affine in
f . We select the free signal f by solving

fopt = argmin
f

J [L](f) (4)

We then calculate wopt = wo+Bwfopt. Our estimate
N̂ of the static nonlinearity is offered nonpara-
metrically by specifying the points on its graph
{wopt

k , z
opt
k }L−1

k=0 . We could interpolate through these
points by fitting piecewise linear interpolants or
smooth functions using any of a variety of methods.
This final step injects bias in our estimates.

4. THE DISPERSION FUNCTION

In this section we develop and analyze our data-
driven measure of “staticness” D[L](z, w) alluded
to in the previous section.

We begin by asking a very simple question. Given
input-output data {zk, wk}

L−1
k=0 , when can we rea-

sonably assert that this data came from a static
nonlinear map w = N (z)? Equivalently, we seek
some “measure of staticness” for the map from z to
w.

To illustrate our thinking, consider the input-
output data sets shown in Figure 4. Each data
set has 1024 samples. Our native intuition immedi-
ately suggests that there is a static nonlinear input-
output relationship revealed in the second data set.
On the other hand, for the first data set we might
reasonably conclude that there is no static nonlinear
function relating the input and the output. In this
section, we mathematically capture this intuition.

w

z

4.1 Triangulation

Consider a set of points Z = {ξk}
L−1
k=0 , ξk ∈ R

2.
A triangulation partitions the convex hull of Z
into a disjoint set of triangles whose vertices are
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Fig. 4. Illustrating the dispersion function
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Fig. 5. Triangulation and corresponding facets.

points in Z . More generally, for a set of points
Z = {ξk}

L−1
k=0 , ξk ∈ R

n, a triangulation partitions
the convex hull of Z into a set of simplices. We will
also refer to these simplices as “triangles”.

Note that a triangulation is not recursive, i.e., the
addition a data point may alter the existing tri-
angulation. While triangulations are not unique,
we consider the Delaunay triangulation (Barber et
al., 1996) due to its attractive geometric and com-
putational properties. Our subsequent arguments,
however, do not rely on this choice of triangulation.

4.2 The Faceted Interpolant

Suppose an input-output data set {zk, wk}
L−1
k=0 came

from a static nonlinear map w = N (z). The Delaua-
nay triangulation partitions the convex hull of the
input data points {zk}

L−1
k=0 into a set of N triangles

T = {T1, . . . , TN}. Corresponding to each triangle
Ti is a facet Fi as shown in Figure 5. These facets
define a piecewise linear surface that is the graph of
a static nonlinearity N̂ defined on the convex hull
of {zk}

L−1
k=0 . We call N̂ the faceted interpolant.

4.3 The Dispersion Function

We propose the use of the dispersion function as
a measure of staticness for nonlinear maps. The
dispersion function is essentially a measure of how
“smooth” the faceted interpolant is.

Definition 4.1. Let {zk, wk}
L−1
k=0 be a set of input-

output data. Suppose a Delaunay triangulation on
{zk}

L−1
k=0 results in N facets Fi with areas AFi

. The
dispersion function is defined to be

D[L](z, w) =
N

∑

i=1

A2
Fi

. (5)

2



4.4 Properties

We first examine the functional dependence of the
dispersion function D[L](z, w) on the signal w. This
is important as our identification algorithm involves
minimizing the dispersion function subject to an
affine constraint on w. We have the following theo-
rem.

Theorem 4.2. The dispersion function D[L](z, w) is
quadratic in w, i.e., there exist a matrix Q and a
scalar r (dependent on z) such that

D[L](z, w) = w∗Qw + r.

2

The dispersion function is a measure of the total
variation in the interpolated graph of a data set
{zk, wk}

L−1
k=0 . In the one dimensional case, the dis-

persion function is the discretization of
∫

(dz2 +
dw2) =

∫

ds2, where s is the arc length of the map
N . Note that for a continuous function,

∫

ds2 = 0,

so if the data set {zk, wk}
L−1
k=0 is sufficiently dense,

we expect that the dispersion function will converge
to zero. This property is captured by the following
theorem.

Theorem 4.3. Suppose Z is dense on Ω. Suppose
the input-output data {zk, wk}

L−1
k=0 came from a

static nonlinearity N ∈ N. Then,

lim
L→∞

D[L](z, w) = 0.

2

We also suspect, but cannot yet prove, that the
converse of Theorem 4.3 holds. Intuitively we sug-
gest that if the dispersion function D[L](z, w) → 0

as 1
L
, then the facted interpolant N̂ [L] converges

to a Lipschitz continuous static nonlinearity. More
precisely, we offer the following conjecture.

Conjecture 4.4. Consider the infinite horizon input-
output data set {zk, wk}∞k=0. Suppose {zk}∞k=0 is
dense on Ω. Suppose

lim
L→∞

LDL(z, w) < ∞.

Then as L → ∞,

N̂L −→ N∞ pointwise on Ω,

where N∞ is Lipschitz continuous almost every-
where. Moreover, if the data {zk, wk}∞0 is generated
by a function N ∈ N, i.e. if wk = N(zk), ∀k, then
N∞ ∈ N. 2

This conjecture (or a result analogous to it) will
prove central in establishing convergence of our
identification algorithm (see Section 6).

5. IDENTIFIABILITY

In this section, we treat the issue of identifiability.
Loosely speaking, the static nonlinear maps in the

LFT model structure of Figure 2 are identifiable
if it is possible to determine them uniquely on
the basis of input-output experiments. As is well
known, identifiability concepts are of fundamental
importance in system identification (Ljung, 1999).

We consider, in this section, the situation where
the noise channel e is absent. Let us denote the
input-output behavior of the LFT model structure
as y = Ω(L,N )u.

Definition 5.1. Suppose N ◦ ∈ N. The LFT model
structure is identifiable at N ◦ if for any N 1 ∈ N

with N ◦ 6= N 1 we have

Ω(L,N ◦) 6= Ω(L,N 1).

The LFT Model Structure is identifiable everywhere
if it is identifiable at all N ◦ ∈ N . 2

We note that these are global notions of identifia-
bility. Partition L comformably with its inputs and
outputs as

L =





Lyu Lyw

Lzu Lzw



 .

Define the set of structured matrices

X = {X = blk-diag(X [1], . . . , X [m])},

where X [i] has the same input-output dimensions
as N [i].

We have the following result:

Theorem 5.2. The LFT Model Structure of Figure
2 is not identifiable everywhere if and only if there
exists 0 6= X ∈ X such that

LywXLzu = 0.

2

6. CONVERGENCE

We cannot, at present, prove convergence of our
identification algorithm. We will, however, offer a
plausibility argument.

Consider the situation where there is no undermod-
elling (i.e., there is some “true” static nonlinearity
N true ∈ N from which the input-output data are
generated). Assume further that there is no noise
(e = 0). Let etrue be the “true” noise sample
path, and let wtrue, ztrue, be the corresponding loop
signals.

We can re-parameterize the set of all signals w
consistent with the input-output data as

w = wtrue + Bwf.

Then, the cost function J [L](f) may be written as

J [L](f) = D[L](ztrue, wtrue + Bwf).

Next, observe that

0 6 inf
f

J [L](f) 6 J [L](0) = D[L](ztrue, wtrue).



Note that wtrue = N true(ztrue). It then follows
from Theorem 4.3 that

0 6 lim
L→∞

inf
f

J [L](f) 6 lim
L→∞

D[L](ztrue, wtrue) = 0.

As a consequence,

J [L](fopt) = D[L](ztrue, wtrue + Bwf) −→ 0.

asymptotically as L → ∞.

Assume z is dense on Ω. This will serve as our
“persistence of excitation” condition. Note that
the co-measurability assumption (A.3) guarantees
that for any persistently exciting signal z, there
exists an input u that could have generated z. This
can be shown by the following argument. From
Assumption A.3, we have that

z = Lzuu + LzuΨC





e

w





z ∈ Range(Lzu).

If Conjecture 4.4 holds, we conclude that the se-
quence of faceted interpolants N̂ [L] → N∞ ∈ N,
and N̂ [L] is consistent with the infinite horizon
input-output data record. Under the further hy-
pothesis of identifiability, there is a unique non-
linearity N true ∈ N with this property, forcing
limL→∞ N̂ [L] = N true pointwise on Ω.

Of course, this argument rests crucially on Conjec-
ture 4.4, which remains open.

7. COMPUTATION

The computations that arise in our candidate iden-
tification algorithm can be efficiently conducted
using state-space methods. A critical fact that we
wish to stress is that the core optimziation problem
(4) in our identification procedure reduces to a
(large) least squares problem. This is because the
objective function J [L](f) is jointly quadratic in e
and w, which are linear in the decision variable f .
The details of the computational algorithm can be
obtained by contacting the first author.

8. EXAMPLE

Consider the the LFT model structure in Figure 2.
Here, L is known and the two nonlinear components
of N are to be identified. Our input u is a random
sequence and e is a white gaussian process. The
length of the data sample is L = 1024. In Figure 8,
the solid lines are the true nonlinearities. The dots
are the estimates based on the 1024 samples.
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