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Abstract: In this paper, a knowledge-based genetic algorithm (GA) is proposed for
dynamic path planning of a mobile robot in unstructured complex environments.
A unique representation method is proposed for the 2-dimensional complex robot
environment, where the obstacles could be of arbitrary shape. According to the
problem representation, an effective evaluation method is developed specially for
the proposed genetic algorithm. The evaluation method is capable of accurately
detecting collisions between a robot path and an arbitrarily-shaped obstacle, and
assigns a cost function that is effective for the proposed genetic algorithm. The
proposed approach uses a problem-specific GA for robot path planning instead of
the standard one. It incorporates the domain knowledge of robot path planning
into its specialised genetic operators, some of which also involve a local search
technique. The effectiveness and efficiency of the proposed genetic algorithm are
demonstrated by simulation and comparison studies. Copyright c©2005 IFAC.
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1. INTRODUCTION

Path planning is an important issue in mobile
robotics. In an environment with obstacles, path
planning is to find a suitable collision-free path
for a mobile robot to move from a start location
to a target location. Very often this path is highly
desirable to be optimal or near-optimal with re-
spect to time, distance or energy. Distance is a
commonly adopted criterion. Robot path planning
has been an active research area, and many meth-
ods have been developed to tackle this problem
(Latombe, 1991), such as global C-space meth-
ods, potential field methods, and neural networks
approaches. Each method has its own strength
over others in certain aspects. Generally, the main
difficulties for robot path-planning problem are
computational complexity, local optimum, and

adaptability. Researchers have always been seek-
ing alternative and more efficient ways to solve
the problem.

There is no doubt that path planning can be
viewed as an optimisation problem (e.g., shortest
distance) under certain constraints (e.g., the given
environment and collision-free condition). Since
the appearance of genetic algorithms (GAs) in
1975, GAs have been used in solving many opti-
misation problems successfully. It is not surprising
that GAs are applied to path planning for mobile
robots. However, like most early GA applications,
most of those methods adopt classical GAs that
use fixed-length binary strings and two basic ge-
netic operators, and few modifications were made
to the algorithms. Besides, most GA approaches
for robot path planning deal with structured en-



vironments or environments with simple-shaped
obstacles. In the genetic algorithms in (Wang et
al., 2002), obstacles do not have actual shape, and
are usually represented by dots (for position only)
or circles (for position and size). In some other
genetic algorithms (Geisler and Manikas, 2002),
environments with only rectangular obstacles are
dealt with. In some approaches (Tu and Yang,
2003), grids and quad-tree are applied to the robot
environments for discretisation, and obstacles are
represented approximately by fitting into the cells.

The actual robot environments cannot be repre-
sented realistically when obstacle are represented
as dots, circles, rectangles, or by fitting into cells.
Real robot environments are usually unstructured
and with arbitrarily shaped obstacles, so it is very
important to represent the environment without
distortion. Shibata and Fukuda (1993) proposed
a genetic algorithm to deal with unstructured en-
vironments where obstacles are convex only. This
approach is based on MAKLINK graph environ-
ment representation (Habib and Asama, 1991),
and needs to form a configuration space before
applying the genetic algorithm, which can be very
time consuming. Besides, the paths are restricted
to passing through the predetermined nodes of the
graph. When dealing with unstructured environ-
ments with non-convex obstacles, evaluation prob-
lem becomes challenging, which requires accurate
collision detection between paths and obstacles
and effective quality assessment.

In this paper, a knowledge based genetic al-
gorithm for path planning of a mobile robot
in unstructured environments is proposed. The
proposed GA uses problem-specific genetic algo-
rithms for robot path planning instead of the stan-
dard GAs. The algorithm uses a unique problem
representation method to represent 2-dimensional
robot environments with complex obstacle layouts
and obstacle are allowed to be of arbitrary shapes.
In accord with the problem representation, an ef-
fective evaluation method is specifically developed
for the proposed genetic algorithm. The evalua-
tion method is able to accurately detect collision
between a robot path and an arbitrarily shaped
obstacle, and assigns costs that is very effective
for the proposed genetic algorithm. The proposed
knowledge based GA incorporates the domain
knowledge into its specialised operators, some of
which also combine a local search technique.

2. THE PROPOSED KNOWLEDGE BASED
GA FOR PATH PLANNING

The proposed genetic algorithm features its sim-
ple and unique problem presentation, its effective
evaluation method and its knowledge based ge-
netic operators.

2.1 Problem Representation

Representation is a key issue in the work of GAs.
The proposed genetic algorithm uses combination
of grids and coordinates for problem representa-
tion. Grids function differently in this representa-
tion. The mobile robot environment is represented
by a 2-dimensional continuous workspace, where
obstacles are represented by the actual coordi-
nates of their vertexes. A potential robot path is
formed by several line segments connecting the
start point S, intermediate nodes, and the target
point T , where S and T are represented by their
natural coordinates. An intermediate node is a
node falling on one of the grids applied on the
workspace. According to a certain resolution, the
grids assigned with sequencing integer numbers
are applied to the workspace to form the interme-
diate nodes of a path. The grids in this represen-
tation function differently from other grid-based
methods. The grids here are not to discretize the
whole environment and do not affect obstacle rep-
resentation. Therefore, there is no distortion of
the environment and obstacles. In fact the grids
here indicate the resolution that only affects the
intermediate nodes, and at the same time make
it possible to use integers to represent a node
instead of real-valued coordinates. Therefore, the
chromosome structure and the genetic operations
are simplified, and thus speed up the computa-
tion. Using grid numbers to represent intermedi-
ate nodes is acceptable as long as the resolution is
high enough for the environment in question. Fig.
1 gives an example of an environment and path
representation. Notice that the obstacles can be
of arbitrary shapes and do not need to fit into the
grids. Also, the start point and the target point
are not restricted to any grids, and they can be
any location in the environment. The resolution of
the grids only relates fine-tunning of intermediate
nodes. A feasible robot path is a collision-free
path, i.e., none of the line segments intersect any
obstacles. The length of a chromosome is variable,
between the minimum of 2 and the maximum
length Nmax. An example of path encoding is
shown in Fig. 2, where S and T are not repre-
sented by grid numbers.

2.2 Evaluation

A robot path generated by the GA can be either
feasible (collision free) or feasible. The evalua-
tion should be able to distinguish feasible and
infeasible paths and tell the difference of path
qualities within either category. Particularly, it is
very important for the proposed genetic algorithm
to distinguish qualities of infeasible paths. The
genetic algorithm generates its initial solutions
randomly, and evolves solutions starting from the
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Fig. 1. A mobile robot environment and path
representation example.
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Fig. 2. An example of chromosomes in the im-
proved GA

initial population. For an environment with many
obstacles, it is very likely that the portion of feasi-
ble solutions in its population is small. Therefore,
the GA needs to evolve feasible solutions from
infeasible solutions. It is beneficial for the GA to
evaluate the infeasible solutions that are easier to
be evolved to feasible solutions as having better
qualities.

The evaluation method should first check the fea-
sibility of a path, which can be done by detecting
collision between line segments of a path and
obstacles in the robot environment. Then if the
path is collision free, the length of the path is
assigned as its cost indicating the quality. If the
path collides obstacle(s), the evaluation method
assigns the cost by estimating how deep the path
intersects the obstacle, i. e., how difficult the path
can escape the obstacle so that new solutions
can be easily evolved from those easier-to-escape
solutions. Based on analysis above, a evaluation
method is given, and the evaluation function is
defined as

Fcost =
N∑

i=1

(di + βiC), (1)

where N is the number of line segments of a path,
di is the Euclidean distance of the two nodes
forming the line segment, C is a constant, βi is
the coefficient denoting depth of collision, and its
definition is given as

βi =

⎧⎪⎨
⎪⎩

0 if ith line segment is feasible
M∑

j=1

αj if it intersects obstacles (2)

where M is the number of obstacles the line seg-
ment intersects. αj is determined by considering
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Fig. 3. Definition of the coefficient βi.

how deep a line segment intersects an obstacle j.
It is defined as the shortest moving distance for
escaping the intersected obstacle. Fig. 3 explains
the definition of αj . In Fig. 3(a), α1 is treated as
the shortest distance to move the line out of the
obstacle. In Fig. 3(b), γ is the shortest distance,
but it is not enough to move the path away from
the obstacle, therefore, instead α1 is assigned to
βi. In Fig. 3(c), the obstacle is connected to the
wall and is treated as a dead-end. The line can
only escape from the other side of the obstacle.
Thus βi is assigned as α1. Fig. 3(d) shows the
situation that the line segment intersects two ob-
stacles, it is considered to be more difficult for the
path to move away from both, so the sum of α1

and α2 is used for βi.

Accurate collision detection plays a key role in
the evaluation. The method to check if a line seg-
ment intersects a convex obstacle was described by
Pavlidis (Pavlidis, 1982). However, the proposed
GA is dealing with arbitrarily shaped obstacles.
Considering the specific requirements needed in
the proposed GA on collision detection between a
straight line segment and an obstacle as well as
on quality assessment, we developed an algorithm
for both collision detection and quality evaluation.
An arbitrarily shaped obstacle is treated as a
group of convex obstacles connected to each other.
Thus, a robot environment consists of one or more
groups of obstacles, each group consists of one or
more convex obstacles that are called members
of the group. A group information including how
many members, which members, and its Min-
Max Box of the group (MMBG) is obtained for
each group. MMBG is calculated to indicate the
minimal and maximal coordinates x and y of
a group. Similarly, a Min-Max Box of Obstacle
(MMBO) is also obtained for each member in a
group. MMBG and MMBO play an important
role to save computational time. A member in-
formation is also attached to each member, which



includes the number of vertexes, the coordinates
of the vertexes, how many and which obstacles it
connects and how it connects (connecting to its
vertexes or sides), and its MMBO. With all the
information, the algorithm is ready to evaluate a
path. The path is checked with one line segment
by another. First, the line segment is checked with
each MMBG. If it does not intersect any MMBG,
then it is collision free. If it intersects a MMBG,
it needs to check with each member in the group
to determine if there is actual collision. The line
segment intersects a group if and only if it collides
at least one member of the group. When collision
is detected, the depth of intersection is calculated
with the consideration of both group and member
information. The process of assigning cost is actu-
ally the process of finding the vertexes from which
the line segment escapes the obstacle most easily.
Starting from the collided member of the obstacle,
the process updates the easiest-to-escape vertex
according to the connection status of members in
the group and their status with regard to the line
segment. Once the vertex is found, the shortest
distance between the vertex and the line segment
is used to calculate the cost.

The proposed evaluation method gives a penalty
to infeasible paths, but still keeps them in the
population pool because they might become good
feasible solutions after certain genetic transfor-
mations. Importantly, this evaluation may allow
some overlap between fitnesses of feasible and
infeasible solutions by adjusting C in Eqn. (1). It
would be beneficial to give more chance to some
good infeasible solutions that would be easily to
be evolved to good solutions. During the evalua-
tion, some information obtained by the evaluation
needs to be recorded so that later it can be used
by some specialised genetic operators as heuristic
knowledge without re-calculation in order to save
computation time. The information includes feasi-
bility (feasible or infeasible), number of infeasible
line segments, and which obstacles intersected by
which line segments of a path.

2.3 Genetic Operators

Those two commonly-used basic genetic opera-
tors, crossover and mutation, are not applicable
for the robot path-planning problem here. They
have to be tailored to suit for the problem and the
adopted problem representation. In addition, to
make the genetic algorithm more effective, three
more specialised operators are designed to make
use of available problem-specific knowledge, in-
cluding the environment knowledge (e.g., numbers
and positions of obstacles) and the path (e.g.,
feasibility and quality of a path). Some opera-
tors combine a small-scale local search technique.
These five operators are illustrated in Fig. 4.

(a) crossover (b) mutation

(c) repair (d) deletion (e) improve

Fig. 4. Five specialised genetic operators that in-
corporates knowledge of robot path planing.

Crossover is the operator that randomly choose
a node from Parent 1 and the other node from
Parent 2. Exchange the part after these two nodes.
Check these two offspring, and delete the part
between two same nodes if it happens. The tra-
ditional 1-point or 2-point crossover cannot be
used here because the length of a chromosome
is variable. The choice of different crossover sites
in different parents can increase the variability of
chromosome length, which benefits exploration of
the solution space.

Mutation is to randomly choose a node and re-
place it with a node that is not included in the
path. Mutation is served as a key role to diversify
the solution population. Therefore, it is not nec-
essary that a solution is better after it is mutated.

Repair is to repair an infeasible line segment by
inserting a suitable node between the two nodes
of the segment. To locate the best node available,
a local search is applied in the neighbouring girds
of the intersected obstacle. When a node is not
available to make the line segment feasible, a
node that makes the line segment least infeasible
is inserted. When the line segment cannot be
improved by inserting a neighbouring node, a
random neighbouring node is inserted, by which
a line segment will not be stuck in any situation.

Deletion is applicable for both feasible and in-
feasible path. Randomly choose one node, check
its two adjacent nodes and connected segments, if
the deletion of the chosen node is beneficial (turn
the infeasible to the feasible, or reduce the cost),
delete the node.

Improvement is designed for feasible solutions.
Randomly chose one node, do a local search in the
neighbouring grids of the node, move to a better
location. This operator is used for fine tuning of
a feasible solution.



These operators are necessary to evolve feasible
and good quality solutions. The firing of these
operators depends on two criteria: probability and
heuristic knowledge (e.g., if feasible then improve-
ment). In an environment with many obstacles,
the portion of feasible solutions in the initial popu-
lation is small. Crossover and mutation operators
are far from adequate to evolve good solutions.
It is desirable to have these operators specially
designed for robot path planning, such as repair
and deletion, to evolve feasible solutions from the
infeasible ones.

2.4 Outline of the Knowledge Based GA

An outline of the proposed algorithm is given in
Fig. 5. Initial solutions are generated randomly
and are evaluated by the fitness function in Eqn.
(1). The population is evolved generation by gen-
eration. In each generation, selection and genetic
operations are applied to the whole population.
When two parents are selected according to some
selection mechanism, one or more genetic opera-
tors are fired and applied to the parents to gener-
ate two children according to some probabilities
and heuristic knowledge. After that, the whole
population is replaced by the generated children
with elitism. The use of elitism can prevent the
GA from losing the good solutions found in the
evolution and speed up convergence of the popu-
lation. The best solution so far is updated in each
generation, and it will be the final solution when
some stop criterion is satisfied. The stop criterion
can either be that the preset maximum generation
is exceeded, or that the best solution remains
unchanged for certain number of generations.

3. SIMULATIONS

To demonstrate the effectiveness of the proposed
knowledge-based GA, several simulations were
conducted. In the simulations, the parameters
are set as: population size is 50, probability for
mutation per chromosome is 0.2, and 0.9 for all
the other operators. Tournament selection and
elitism are applied. The proposed GA can deal
with different resolutions. For simplicity, in all
simulations, 100 unit × 100 unit grids is used un-
less it is otherwise stated. The simulation results
also show that 100×100 resolution is high enough
for the environments studied in this section. All
simulations are conducted on a Pentium III PC
(933 MHz) with Windows 2000.

3.1 Path Planning in Unstructured Environments

The proposed algorithm is first applied to a
unstructured environment with many arbitrarily

Begin

generation = 0

initialize population P randomly

for (the whole population)

select 2 Parents from P

select one or more operators by

probabilty and heuristic knowledge 

2 Children = apply operators 

          to the 2 Parents

select the best individual from P and replace

       the worst individual in the children

repalce P with all the children

evaluate P

 stop criteria met ?

generation ++

update best_sofar

e.g., generation >= max generation

or solution unchanged for certain

                generations

No

Yes

evaluate P
best_sofar = the best solution from P

stop

Fig. 5. Outline of the knowledge-based genetic al-
gorithm for path planning of a mobile robot.

shaped obstacles. Fig. 6 shows one typical run.
The algorithm first randomly generates the initial
population (see Fig. 6(a)). Fig. 6(b) displays the
best solution in the initial population, which is
even infeasible and has the cost of 1043.25. Start-
ing from this initial population, after selection and
genetic operations, generation by generation, the
population is evolved better and better. Fig. 6(c)
shows the best solutions obtained from several dif-
ferent generations. It shows that the best solution
first becomes feasible, and then the GA starts to
improve the quality of solutions from each gener-
ation. The best solution in the population after
certain number of generations is obtained as the
final solution. Fig. 6(d) shows the finial solution
obtained at generation 46. The cost is 117.56 and
the computation time is 6.09 seconds. To test the
robustness of the proposed GA, it has been run for
many times. For 20 runs, the average cost is 117.91
with the standard deviation of 1.43, and the av-
erage computation time is 7.81 seconds with 2.58
standard deviation, and the average generations
needed is 51 with 16 standard deviation.

3.2 Path Planning in a Clustered Environment

In this simulation, the proposed genetic algorithm
is applied to a clustered environment with many
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Fig. 6. One typical run of robot path planning
in an unstructured environment. (a) the ran-
domly generated initial paths; (b) the best
path in the initial population; (c) the best
paths from different generations; (d) the final
solution path.

arbitrarily shaped obstacle. Comparing to the
above simulation, the coverage of obstacles in the
environment greatly increases. Besides, it contains
obstacles with very complicated shapes such as
obstacle A in Figure 7. The simulation results in
Figure 7 indicate that there is no problem for the
GA to deal with those obstacles. some obstacles
are connected only by a point, the GA can still ac-
curately detect collision and no cut-through path
is allowed. In a very complicated environment,
there may be several near-optimal solutions. The
GA is able to obtain different solutions in different
runs because of the randomness involved in ge-
netic algorithms. However, near-optimal solutions
are guaranteed. Fig. 7 shows four near-optimal
solutions from four different runs. Their costs are
160.50 (a), 160.93 (b), 163.95 (c) and 170.53 (d),
respectively, which are slightly different, but they
are all good solution paths to this complex envi-
ronment. The average computation time for the
four runs is 20.83 seconds.

4. CONCLUSION

In this paper, a knowledge-based genetic algo-
rithm for path planning of mobile robots in un-
structured environments is proposed. The GA
uses a simple and unique path representation that
uses natural coordinates to represent environment
and grids to form the intermediate nodes of paths.
The classical crossover and mutation genetic op-
erators are tailored to the path planning problem.
The proposed genetic algorithm also incorporates
domain knowledge into its three problem-specific
genetic operators for robot path planning. These
operators also adopt small-scale local search based
on some heuristic knowledge. The developed GA

(a)
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(d)
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T
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T

A A

A A

Fig. 7. Path planning in a clustered environment
at four different runs.

also features its one fitness function for both
feasible and infeasible solutions. This evaluation
method accurately detects collision between ob-
stacles and paths, and effectively distinguishes
qualities of both feasible and infeasible solutions,
which is critical for the GA to evolve better so-
lutions. The efficiency in computation time make
the proposed knowledge-based genetic algorithm
be able to be applied to real applications.
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