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Abstract: This paper shows; that, in some conditions we can obtain the exact solution for
amissile and an aircraft differential gameswhich minimizes and maximizes the essential
pay-off of the problem: the miss distance, without employing any linearized
approximation. The idea of our method is, by starting from the aircraft one-sided optimal
control solution against a PNG missile, which maximizes the miss distance, and then
optimize the missile control to minimize the miss distance. The obtained minimax
solution shows the resultant miss distance is far smaller than that of the PNG missile.
Although it is impossible to obtain the solution in real time, however, if the results are
incorporated into the missile guidance system as a knowledge base, the performance will
be fairly improved. The extension of the study into more general casesis also explained.

Copyright © 2005 IFAC

Keywords: Missile Guidance, Differential Games, Pursuit-Evasion, Missiles, Aircratt

1. INTRODUCTION

Many studies have appeared about pursuit-evasion
dynamic games between a missile and an aircraft,
however, none of them has obtained the exact
solution which minimizes and maximizes the
essential pay-off of the problem the miss distance
(MD). Many papers have obtained minimaxtime
solutions between two vehicles under linearized
approximation, however, as far as the missile-aircraft
pursuit-evasion game is concerned, there is little
importance of minimizing and maximizing the
interception time. If the exact solution which
minimizes and maximizes the MD (Let us call this

exact solution “ESMD”) is obtained, and the
characteristics of the ESMD are studied, we will be
able to introduce the knowledge into a missile
guidance system, and improve the performance. This
paper shows an approach to obtain the ESMD for
pursuit-evasion differential games between missile
and aircraft without employing any linearized
approximation. Our former studies (Imado and Miwa,
1983), (Imado and Miwa, 1986), (Imado and Uehara,
1998), (Imado, 2001) have shown that, the optimal
aircraft maneuver against a proportional navigation
guidance (PNG) missile becomes a horizontal-S type
or a vertical-S type. As the PNG is a suboptimal
control for an evasive target, the solution may be



considered as an approximation of the precise
differential game solution. The idea of this study is:
to start from the aircraft a one-sided optimal evasive
control solution against a PNG missile, which
maximizes the MD, and then improving the missile
control to minimizethe MD. The minimax solution is
iteratively corrected, and finally we could obtain the
exact minimax solution for this problem. The detail
of the problem, the algorithm for the solution and an
example result is shown in this paper. As the initial
geometry in this study israther limited, the method of
extending the study into more general cases is also
described.

2. MATHEMATICAL MODEL

Fig. 1 shows the relative geometry of the pursuer and
the evader and symbols. For the reason explained
later, the motions are constrained in a vertical plane.
In the paper, the pursuer is a missile, and the evader
is an aircraft. The following equations of motion are
used for calculation of the optimal controls for both
vehicles. The aircraft is modeled as a point mass, and
the equations of motion in avertical plane are

Aircraft Motion
vi =(Tycosa - D)/m; - gsing; (1)
gt = (L+Tysna)/(myvy)

- (9/vt ) cosgt 2
Xt = Vi COSQt ©)
he =vi sing (4)
where
L= (%)I’VtZSCL (%)
D:(}é)thZStCD (6)
where
CL=Cra(a-ao)
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A constraint is imposed on the value of the aircraft
lateral acceleration at, which is treated as the
aircraft control variable.

a = L/m £ aimax 8)

Missile Motion
The missile lateral acceleration is approximated by a
first-order lag to alateral acceleration command.

Vi =1/ My (T - D) ©)

am=(@m - am)/t (10

Om =am/Vm (11)

Xm = Vm COSgm (12

hm =VmSNgm (13
where

D = KgVin? + Kz @m/ Vin)* (14
kl :(}é)r mSmCDOm

k2 ZZ(mmmz 1(r mSm) (19
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The calculation method of optima missile
acceleration command ame, which is treated as the
missile control variable is explained later. On the
other hand, for the PNG missile with signal saturation
taken into consideration, amc isgiven by

} NeVes for |ame| £ amemex

17

ame = | .
famemacsign(ac) for |amc| > amemex

In Eq.(17), Ne is the effective navigation ratio, V¢
the closing velocity, and s* the line-of-sight turning
rate given by

Ve =-r (18)
s = Y[ - ) (% - %)
- (h- B - x0)] (19

where r is slant range,

r =[(xt - Xm)® +(hy - hm)ZF/2 (20)

3. SOME FEATURES OF THE GAME
SOLUTION

Some features of the optimal evasive maneuvers of
vehicles in a plane are well depicted in (Imado and
Miwa, 1983), (Imado and Miwa, 1986), (Imado,
2001). Fig.2 shows a typical tragectory and control

histories of an aircraft against a PNG missile. In head
on cases, if the initial relative distance is large
enough, the evader at first takes the maximum lateral
acceleration and inverse the direction, then
accelerates longitudinally. The missile optimal
control is easily obtained in this case, however, the
solution has little importance. If the initial distance is
small, the evader takes the maximum lateral
acceleration to one side at first, then at an appropriate
time, it changes the sign of its acceleration and takes

Fig.1 Geometry and symbols



the maximum lateral acceleration to the opposite side.
On the other hand, if the initial distance is between
these two cases,. the optimal control of the evader
will become as showninFig.2.

4. EXACT SOLUTION OF THE GAME

In this paper, a differential game solution is obtained
in reference to the short range case. In the case of a
horizontal plane, the symmetrical optimal maneuver
exists, however, in the case of avertical plane, the
optimal aircraft maneuver against a PNG missile is,
first to take the maximum g upward, and at an
appropriate time, inversethe aircraft attitude and take
the maximum g downward. The maneuver is called a
“split-S’. To understand why the downward split-S
produces alarger M D than the symmetrical maneuver
(first downward, next upward), refer to (Imado and
Miwa, 1983). However, as the missile does not know
whether the aircraft will continue the maximum
upward g, or reverse the direction at any time,
therefore the optimal missile control should be the
one that minimizes the MD in both cases. Asthe
result, the missile takes at first a smaller upward g,
and follows the aircraft to cope with both aircraft
maneuvers. The missile and aircraft initial relative
geometry is shown in Fig.l, where appropriate
altitude and distance are set. (see Table 1) The steps
to obtain this differential game solution are as
follows.

Step 1. Obtaining nominal trajectories and controls

by PNG

(DProvide a set of the aircraft maneuvers. The
aircraft takes the maximum g upward, and inverses
its attitude at an arbitrary time, and takes the
maximum g downward. The arbitrary times are set
e.g. with O.1sinterval from the initial time until
interception, such as Gs, 0.1s, 0.2, ....,5.9s, 6.0s.
Let us cal this time set {0Os, 0.1s, 0.2, ..., 5.9s,
6.0s} = { t3,to,.,th-Lty } as {ti} and
corresponding maneuvers set as“maneuver { A }”.
The last component of the { Ai} is the maneuver,
which takes the maximum g upward throughout
until interception. Let us cal this maneuver
“maneuver B".

(2)The missile is guided by PNG with the effective
navigation gain Ne is set to be Nemax =40,
and simulations are conducted against
maneuvers B and A, where i is increased one
by one. For small “i"s, termina miss distances
(MDs) are Om against both B and A, but for a
value of alarger “i”, a smal MD is produced
against the maneuver A .

(3)For thiscase, thevalueof the Ne at O£t <t;
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Fig.3 An exact solution of missile-aircraft

pursuit-evasion problems

Table 1 Parameters

Aircraft (afterburner)

m = 7500kg

hio =4572m

S =26m’

Vip =290.2m/s (0.9M)
CLa =3.689/rad
Copo =0.0224
max = 99
Engine: PWF-100 Tmax = Trmax (V, )

k =0.260

Missile (Sustainer phase)

Mmo =176kg | s = 250s
Tm = 6000N

te =8s

Sm = 0.0324m’

hmo =4572m

Vmo = 644.6m/s (2.0M)
CLa =35.0/rad
Cpo =0.90
acmax = 409

ro =3000m (head on)

k =0.030




is decreased a small value, until the MD against A
is diminished, while against B is still Om. Note
that, the Ne at ti £t is still 4.0. Next, i is
increased and if a MD is produced, the same
process is taken. Finally, we can find the “i”
where against both maneuversB and A, some
MDs (both are not insignificant) are produced.
Then we adjust the value of the Ne at O£t <t;
by increasing or decreasing so that both MD
against B and A become equal. Let us denote
the corresponding value of the Ne and ti, as
Neo and tp respectively. We will call the point
“Non zero miss point”
(49)We employ the PNG with the value of

Ne:NeO for 0£t<tp
Ne = Nemax  for tp £t

The processis continued by increasing thevalue i

one by one, throughout all sets of {ti}. The value
of MD against B and A increases at first,
reaches to a maximum value, then decreases, and
finally it becomes 0. Let us call the obtained set of
amc(t) by PNG as {a*mc(t) }. Above processes
are easily worked out, because all calculations are
conducted only by simulations which do not
include any optimizing process.

Step 2. Optimizing the missile control

(1)The obtained set in step 1 is employed as nominal
trajectories and controls in order to obtain optimal
controls of aomc(t) which minimize the MD. The
optimizing algorithm is the steepest ascent method
(Bryson Jr, A.E. and Denham, W.F., 1962) shown
in Appendix. In the optimization process, theinitial
missile condition is given by the states at tp
obtained in step 1, and optimal controls until
interception are calculated against the aircraft
maneuvers B and A.

(2)As the optimal controls are more effective than
PNG controls, MDs will be 0 against both B and
A, however for alarger timeti, some M Dswill be
produced. Suppose that at a time ti, the missile
atitude is hmi, and optimal controls between
tiEt£tsy against maneuvers B and A
produced different values of MDs, then the missile
altitude at ti; hmi is increased or decreased in
order to produce the same MD value againstB
and A, in the same way as we have adjusted
amc(t) in step 1. Let us denote the obtained hmi
as h* mi .

(3)With the concept of energy maneuverability, it is
natural that a larger vm produces a smaller MD.
Therefore, we calculate the optimal  amc(t) which
maximizes* Vm(ti) between O£t £t; , where
hm(ti)=h mi is constrained.

(4)The change of amc(t) in (3) causes the change
of missile state atti.Therefore (2) and (3) are
repeated and through this iteration process,
optimal missile state at tj and optimal control
a’me(t) . (OE£tE£L ) as well as a’me(t)
(ti <t £1t;) are obtained.

(5)Work out this process by increasing the value i
of { ti} one by one, throughout all components of
{ti}. Figure 3shows an example of the results. In
the upper figure, PNG missile vs optimal aircraft
trajectories as well as the MDs are shown where
the maximum MD is 7.1m. On the other hand, in
the lower figure, solid lines show the missile and
aircraft minimax trajectories. The minimax pay-off
inthiscaseis 1.2m, which shows a great reduction
of the MD by employing the missile guidance
based on the game solution. Table 1 shows some
parameters employed.

Necessary conditions of the solution

Although the possibility of the local solution of this
result can not be denied, necessary conditions of the
solution are numerically verified asfollows.

H
ﬂ_:o or |amc|:acmax
Tlame
for ts£EtEts
H
—=0 or |a|l=a
a lac| = atma
for OEtE£t; (21

where ts is the time when the minimax trajectory of
the vehicles branches into two curves, and the system
Hamiltonian function H is defined by

U = (amc,a&) (23)

As for symbols employed in above equations, seethe
appendix. The above characteristics are automatically
satisfied by the steepest ascent algorithm The saddle
point conditionis satisfied in the result.

é.0 U_ 16,0 0.\U_ 1€ 0.0
Jéarm(t),a(t)g< Jéamc(t),a (t)g< Jéamc(t), & (t)
for O£t £ty (29

where ar?']c(t) and ato(t) are optimal solutions of
amc(t) and ai(t) , respectively. The above
characteristics are assured by the proposed algorithm.
It is also verified by selecting arbitrary differential
changes from the optimal control of one vehicle and
calculating corresponding one-sided optimal control



of the opponent vehicle and conducting simulations.

5.THE EXTENSION OF THE STUDY

The example result obtained in the previous section
may not be so impressive. Another type of optimal
aircraft evasive maneuver against PNG missile shown
in Fig.2 will be more interesting. In the case, the
initial geometry istail chase, and the aircraft employs
its angle-of-attack a as the control variable instead
of at, but the controls a and a are equivaent.
The noticeable feature of this maneuver is that it
employs an intermediate value of a in earlier time.
The reason is considered as that, the aircraft drag is
increased in proportion to a 2 (or atz), the use of
maximum a may not be optimal. Depending on the
characteristics of the PWF-100 engine employed in
this paper, the aircraft can avail the larger thrust at
higher velocity and lower altitude. Therefore, it is
expected that the aircraft initialy takes an
intermediate upward acceleration, and at a suitable
time, dives downward with its maximum at. A
study to find such a kind of minimax solution is
currently being conducted. The algorithm is stated as
follows.

Steps for a medium range case.

1.Define the time set {ti} like asin Sec.4. For each
ti, (i =1~n), calculate the set of optimal controls
of the aircraft and the missile which maximize the
aircraft and missile velocities at i, respectively.

2.The above process produces the sets of terminal
surfaces {§/ m;i} (i =1~n) for the missile, and
ﬁ/ a,i} (i=1~n) for the aircraft, respectively.
From the arbitrary point A on Yy a,i, the aircraft
takes maximum upward or downward
accelerations. The trgjectories of the aircraft are
shown as Se1 and Sa2 in Fig.4, respectively.
Calculate the missile optimal controls which start
from y mj, and minimize MD against Sa1 and
Sa2. The following process are almost the same as
that of sec.4, however, the calculation must be
conducted through all terminal surfaces y 4. As
the total process is severely time intensive, an
efficient computer program is under development.
The conceptual minimax tragjectories of two
vehicles are shown in Fig.5.

CONCLUSION

An exact solution for missile-aircraft pursuit-evasion
gamesisobtained and the result is shown.

A

Missile Aircraft

Fig.4 The calculation of the minimax solution
for a medium range case

Y a,i tAircraft terminal (velocity maximum) surface
at t

Y mi:Missile terminal (velocity maximum) surface
at ti

Sa1: Aircraft takes maximum upward acceleration
a A

Sa2 : Aircraft takes maximum downward
accelerationat A

Sm1:Missiletakes optimal control to minimize
terminal missagainst Se1 at M

Sm2: Missile takes optimal control to minimize
terminal miss against Sa2 at Mi

Sa1
MDmax (Maxupwardg)

Vm(ti*)max Va(ti‘)max

MDmin MDmax
(Maxdownwardg)

[0}
Missile Aircraft

Fig.5 The concept of a minimax solution

The algorithm to solve this problem is explained in
detail. The method of the extension of the study into
more general casesis also explained.
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Technology and

Appendix

A steepest ascent method (Bryson J. A.E. and
Denham, W.F., 1962) is a well-known algorithm to
solve nonlinear optimal control problems. A summary
of the algorithm is shown here for the readers
convenience.

Find U(t) to maximize (for minimizing, change the
sign of thefollowing f )

J=f[x(tr)] (A-1)
where

X = f(X,0,t) (A-2)

X(to) =Xo : specified (A-3)
with terminal constraints

y{X(ts ).t ] =0 (A-4)

where X(t) isan n-dimensiona state vector, u(t)
isan m-dimensional control vector, and y  isa
g -dimensional constraint vector. The terminal time
tf is determined from the following stopping
condition:
WX(t1 ).t ]=0 (A-5)
The optima control u(t)
following algorithm.
1)Estimate a set of control variable histories U(t)
(which is called anominal control)
2)Integrate the system equations (A -2) with the initial
condition (A-3) and control variable histories from
step 1 until (A-5) is satisfied. Record X(t) ,ul(t),
and y[X(tr)]. Calculate the time histories of the
(n” n) and(n" m) matrices of functions:

is obtained by the

F(t) = ﬂ)_( G(t) = ﬂu (A-6)
3)Determine n -vector influence functions [ (t),
I w(t) and (n" q) matrix of influence functions
l'y (t), by backward integration of the following
influence equations, using X(t;) obtained in Step
2 to determine the boundary conditions:

f
AT =5

A-8

ad]Wo

|'yT:-|yTﬂf A1y T (tr) = EEHL? (A-12)
e Tx g

Calculate the following influence functions

lew =1+ - f.(tf) I w (A-13)
W(tt)
y (tr)
[ = - | -
yW y V\(tf) y (A-14)

4) Simultaneously with Step 3 ,compute the following

integrals:
tf

lyy = QI TowowW Gy wdt (A-15)
Tyt —QI T wGW G T rwat (A-16)
(A-17)

I —Ql waW el I twdt

5)Choose values of dy  to cause the next solution
to be closer to the desired values Y [X(t1)] =0.
For example, one might choose

O<efl

dy =-ey [X(tr)], (A-18)

The proper choice of du(t), which increase the J
isgiven asfollows:

au(t) = (U 2mW G (lrw- lywV)  (A-19)
where
1
é T o2
om=é Iff2 ny I ny i (A-20)
&dp)” - dy” Iyy dYH

where dp and ( m” m ) matrix of weighting
functions W (t) are chosen to satisfy

tf
(dp)® = QdJT (W (t)da (t)dt (A-22)

6)Repeat Steps 15, using an improved estimate of
u(t)

where

u(t) =u(t)oa +du(t) (A-23)
The key technique of the algorithm is the proper
choice of the value dp, which must be changed
every step, and how to avoid dropping into local
optima, and to reach to the global optimum.



