
ADVANCED CONTROL ALGORITHMS + SIMULINK
COMPATIBILITY + REAL-TIME OS = REX

Pavel Balda, Miloš Schlegel, MilanŠtětina

University of West Bohemia in Pilsen,
Department of Cybernetics,

Univerzitńı 8, 306 14 Plzěn, Czech Republic.
e-mail: pbalda@kky.zcu.cz

Abstract: This paper describes the structure and features of a new industrial control system
calledREX. During the system design, special attention was paid to the simulation facility
of the control algorithms. The equivalent behavior of simulation and real-time control is
guaranteed by a large function blocks library which is implemented for both Simulink and
each target platform.REX is suitable for building real-time control systems of real, virtual
and remote laboratories.REX does not utilize Real Time Workshop by The Mathworks.
Copyright c© 2005 IFAC.

Keywords: industrial control system, embedded control, Simulink, OPC, real-time
control system.

1. INTRODUCTION

There is a rather wide gap between control engineer-
ing theory and practice. The way from the develop-
ment of a new algorithm to its practical implementa-
tion is usually very long and laborious because both
areas use different tools. Currently, Matlab-Simulink
(The Mathworks, 2001) is perhaps the most widely
spread program system used for the development and
testing of new algorithms in industrial process control.
Simulink is more frequently used not only in academic
institutions but also in engineering practice. Practi-
cal use of standard Simulink blocks is, however, not
without obstacles, because these blocks have not been
developed for industrial applications.

To bridge the above mentioned gap, a new control
system,REX, has been developed. The main design
requirements have been as follows:

• Compatibility with Matlab-Simulink
• Development of industrial control block library

(blockset)
• Openness of the system, easy creation of new

algorithms

• Suitability for the teaching of control engineer-
ing

• Support of industrial standards and internet tech-
nologies

The objective of the paper is to describe briefly the
creation of aREX application and to emphasize the
possibility of simulating it in Simulink before putting
it into operation. TheREX control system is an open
and scalable system, which is suitable for embed-
ded control.REX can be easily ported to different
platforms with C and C++ language compilers, from
dedicated control cards and simple real-time execu-
tives to process stations equipped with standard op-
erating systems. At present,REX supports Windows
NT/2000/XP, Windows CE .NET and a hard real-time
operating system Phar Lap ETS (Embedded Tools
Suite).

REX has been used for the building of the remote
and virtual laboratory in the department of cybernetics
(lab.fav.zcu.cz). Below is the list of sections
following this Introduction:

2 Structure ofREX

Configuration Visualization OPC clients

Diagnostics

Communication

Development, visualizationHost

Target

RexView

Process

EfaDrv AdvDrvIODrv1 IODrvN

File
.rex

RexCore

File
.mdl

RexComp

RexDraw Simulink

RexOPCsv

RexAutSv

TCP/IP

TCP/IP

Indusoft WS

Excel

Genesis 32

In Touch

IExplorer

Automation

OPCDCOM

OPCDrv

OPCSvr1

OPCSvrM

OPCMbDrv

Real-time control

…

…

Fig. 1. Structure ofREX control system

3 Function block libraryRexLib
4 REX runtime and diagnostics
5 Configuration ofREX
6 OPC (OLE for Process Control) utilization

2. STRUCTURE OFREX

The structure of theREX control system and its rela-
tions to an environment are shown in fig. 1.

The top part of the figure contains components of
a host development environment which is (simul-
taneously) the visualization and operator manage-
ment environment. All current development tools of
REX are created for the Windows operating sys-
tems (95/98/ME/NT/2000/XP). Standard visualiza-
tion tools are used (some of them are shown in the
figure). Visualization tools are connected to the con-
trol system through an OPC interface, which uses
COM (Component Object Model) and DCOM (Dis-
tributed COM) services, or through Automation (OLE
Automation) and various scripts (VBScript, JScript,
Visual Basic).

The bottom part of the figure presents the structure
of the target enviroment, which implements real time
control algorithms. In addition to the Windows op-
erating systems mentioned above, also e.g. Windows
CE or Phar Lap ETS can be chosen for the target
environment. In the case of the Windows operating

systems, the target and host environments can be the
same, even on a single computer.

The links between host and target environments are
carried out by a communication layer (in the middle
of fig. 1). The most frequently used communication
protocol is the TCP/IP standard, which is used as a
basis of our own diagnostic protocol ofREX.

3. FUNCTION BLOCK LIBRARY

The control algorithms performed byREX are de-
veloped using only a special function block library
(block set) calledRexLib, (Schlegelet al., 2001). At
present, the library contains more than 120 function
blocks, which are compiled for Simulink and each
target platform (Windows, Windows CE and Phar
Lap ETS). The library contains both simple function
blocks (similar to the corresponding Simulink blocks)
and advanced industrial control blocks. The most so-
phisticated function blocks are depicted in fig. 2.

PIDMA is the full ISA PID controller supplemented
with the built-in autotuning procedure. After start
of the autotuner, the rectangle pulse is applied to
the input of the process and the first three process
moments are computed from the pulse response.
Subsequently, the controller parameters are deter-
mined by a model based design procedure (Schlegel
et al., 2002).

dv
sp
pv
tv
hv
MAN
ID
RUN
HLD
BRK
SETC
ips
MFR

mv
de

SAT
IDBSY

w
xre
xim
epv
IDE
iIDE

p1
p2
p3
p4
p5
p6

SC2FA

HALT
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

err
y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

REXLANG

dv

sp

pv

tv

hv

MAN

IH

TUNE

TBRK

TAFF

ips

mv
dmv

de
SAT

TBSY
TE
ite

trem
pk
pti

ptd
pnd
pb
pc

PIDMA

Fig. 2. Examples of advanced function blocks from
RexLib

setpoint

hand value

MAN/AUT

tuner start

tuner break

tuner outputs

tuner results

ips=0: controller parameterstuner affirmation

par. set index

manipul. var.

Autotuning PID loop with analog output

HINT: 1. set tuner parameters
2. in manual mode (MAN=1, TUNE=0), set a working point by hand value (hv)
and wait for steady state

3. TUNE 0−−>1 starts the autotuning function (TBSY 0−−>1)
4. wait for the end of tuning (TBSY 1−−>0); if TE=0, then all is OK
5. check the computed PID parameters in closed loop (TAFF=1, MAN=0, change sp or dv)

disturbance PROCESS

integrator hold

 ips=1: process moments

 ips=2: FOPDT processmodel

Scope

SLEEP

dv

sp

pv

tv

hv

MAN

IH

TUNE

TBRK

TAFF

ips

mv
dmv

de
SAT

TBSY
TE
ite

trem
pk
pti

ptd
pnd
pb
pc

PIDMA

u y

MDL

y

y

y

y

Y

Y

Y

Y

Y

Fig. 3. Simple autotuning control loop inREX

SC2FA is a self-tuning controller for lightly damped
processes. A new algorithm of the frequency do-
main identification and the standard state space ap-
proach form the core of the automatic controller
design method (?).

REXLANGis a special function block which allows
the user to write his/her own code in the program-
ming language called RexLang. This language sup-
ports all common C language commands (e.g.if ,
else , for , while , do-while , switch), call-
ing user defined functions, standard math functions,
and work with indexed arrays. RexLang is almost
a subset of the C language except for commands
input , output , parameter , which map block
inputs (u0 to u15), outputs (y0 to y15) and pa-
rameters (p0 to p15) to user defined C language
variables.

Fig. 3 demonstrates the example of a simple control
loop with autotuning feature based on theRexLib
blocks. Detailed information about these and other
blocks can be found in (REX Controls, 2004).

4. REX RUNTIME AND DIAGNOSTICS

The core ofREX consists of a program,RexCore,
which runs continually on the target platform. Other
tools are necessary for watching the control system
behavior from the host platform, especially during
putting the control system into operation. This aim is
partially satisfied by the already mentioned visualiza-

tion tools, but a detailed view is provided by a program
calledRexView.

4.1 RexCore – the control system core

RexCore is a rather complicated program performing,
simultaneously, different activities which are usual in
control systems. Particular activities are executed ac-
cording to their priorities in the preemptive multitask-
ing mode. The following activities belong to the core
subsystems:

Real-time Subsystemtakes care of the triggering of
tasks and nested fuction blocks, and triggering of
I/O drivers. It also collects and renders diagnostic
information about the system performance and the
timing variables of tasks and drivers.

Input-output Subsystem provides interfaces for the
I/O drivers of hardware devices which are used
to acquire process inputs and to actuate process
outputs.

Algorithmic subsystem includes function block al-
gorithms which are called from real-time subsystem
tasks.

Diagnostic subsystemprovides runtime diagnostic
information and enables application download and
debugging.

Archive subsystem serves for the archiving of events,
alarms and historical trends of selected variables.

4.2 RexView – the diagnostic tool

The RexView program makes it possible to watch
what is going on in the control system core. Therefore,
it is a very important tool during the debugging of
the control system and also in routine operation when
a problem occurs. The program offers detailed, hier-
archically ordered information about all core subsys-
tems. The communication protocol based on TCP/IP
makes it possible to connectRexView to a running
core on the local computer, local area network or re-
mote network (e.g. through Internet).

Fig. 4 demonstrates one type of theRexView screen.
A more detailed description of the program is con-
tained in the user manual.

The left part of the figure is filled by the hierarchy of
control system subsystems and objects. The selected
PIDMAblock is tenth block of the real-time subsystem
task mtuner in the tree structure.1 The PIDMA
block implements the PID controller equipped with a
built-in autotuner (Schlegelet al., 2002).

TheWorkspace property page containing thePIDMA
block workspace variables is chosen on the right hand
part of the screen. The top part of the property page

1 Blocks of the given task are ordered in the same way as they are
executed in the task.

Fig. 4. Sample of aRexView program screen

contains checkboxes for the selection of the kinds of
variable (inputs, outputs, parameters and states). The
middle part of the page contains the list of selected
variables whose values are periodically updated. The
connections to adjacent blocks are also visible. The
bottom part makes it possible to enter the values of
parameters and to simulate the values of selected in-
puts. In this case the inputMANis selected. Its value1
means that the controller is in the manual mode. If we
want to switch the controller to the automatic mode
directly (for the debugging purpose), it is sufficient to
check the itemConstant , then to choose the value
0 in theConst value of input field and finally
to press the buttonSet .

The other property pages in the right hand part of
the figure correspond to the properties of the superior
objects of the selected blockPIDMA:

Task depicts the diagnostics of the taskmtuner
(e.g. the measurements of current, average, mini-
mum and maximum execution time variables, com-
puting error indications)

Executive shows the identification and diagnos-
tic data of the current real-time executive instance
Active executive (e.g. creation, download
and last start dates and times, memory usage)

Target identifies the current target device (here
pavel) which is on-line (e.g. target device type,
operating system name and version,REX version
and build date)

The program contains also property pages of the other
REX control system core objects. The appropriate
page is activated when a given type object is selected,
e.g. a module, a driver, a trend or an archive.

prev next

loop

Modules

Drivers

Archives

QTask

Level0

Level1

Level2

Level3

EXEC

prev next

EFADRV

prev next

EFA

Fig. 5. A main fileexec.mdl of a simple control
loop example

5. CONFIGURATION OFREX

REX is configured by creating function block dia-
grams consisting of a large function block library
(Schlegelet al., 2001). The function block library is
available in Simulink and all target platform versions
of REX. This fact makes it possible to draw function
block diagrams in the Simulink built-in editor. The
second possibility is to useREX’s own editor,Rex-
Draw.

Both programs, Simulink andRexDraw, store func-
tion block diagrams in files with the.mdl extenstion
(model). These text files are too big to be transferred
to some memory limited embedded devices. That is
why the .mdl files are compiled by theRexComp
compiler into the binary format.rex (section 5.2).

The configuration ofREX is demonstrated on a simple
control loop example which is shown in figures 5, 6
and 7.

The rest of this section explains the mutual relations
of all the three figures.

Simulation
of the process

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU

u y

LIN_PV

u y

LIN_MV

EFA__AO_MV

[EFA__AI_PV]

y

CNR

Fig. 6. A particular simple control loop configuration
exampleloop.mdl

Scope

u y

MDL

EFA__AI_PV[EFA__AO_MV]

Fig. 7. The simulation subsystemSimulation
of the process of the configuration
loop.mdl

5.1 RexDraw – Graphic editor of function block
diagrams

The RexDraw program is used for function block
diagrams design in a way very similar to the Simulink
built-in editor. Both programs generate files with the
.mdl extension but there are some differences in their
options.

First of all, RexDraw allows to compose.mdl files
using only blocks from the large library ofREX
blocks (Schlegelet al., 2001). All these blocks work
in discrete time although many of them are dis-
cretized for a given sampling period. This fact corre-
sponds to the SimulinkSolver options param-
eters:Type: Fixed step and discrete (no
continuous states) .

While a whole Simulink configuration consists of the
only one file which can contain many subsystems
(see the fileloop.mdl in fig. 6 and the subsystem
Simulation of the process in fig. 7), any
REX configuration consists of at least two files. Only
one of them is calledthe project main file(in this case
the fileexec.mdl in fig. 5).

The project main file specifies the configuration of the
RexCore particular subsystems, which are described
in paragraph 4.1. Our example is very simple; the real-
time executive is represented by the blockEXEC, the
remaining blocks serve the following purposes:

EFADRV(ETS Fast Advantech Driver) is one of the
REX control system modules. This particular mod-
ule2 implements the fast driver of several PCI
boards by Advantech for the hard real-time operat-
ing system Phar Lap ETS (Embedded Tools Suite)
by VenturCom.

EFA is an I/O driver block. Its first parameter is the
name of a module implementing the driver, in this
caseEFADRV. The next parameter is the name of a
configuration file which contains information about

2 The present version ofREX supports also other drivers, e.g.
Modbus master an slave (also over TCP/IP), standard Advantech
driver, OPC driver, etc. (see fig. 1.)

the source of control system inputs and destination
of outputs in addition to the device parameters. For
control system design, the most important parame-
ter is the name of the block (here it isEFA) which
determines the prefix of all names of inputs and
outputs connected to this driver (see paragraph 5.2
for more details).

loop is the file name (the.mdl extension is ap-
pended automatically) containing the control task
configuration. This task is inserted into the control
level 0 (see the outputLevel0 of the blockEXEC).
It is presented in fig. 6.

The described blocks possess inputsprev (previous)
and outputsnext which allow to chain several blocks
representing modules, I/O drivers and control tasks in
the configuration. The same rule holds for archives
(not used in the example) which are connected to
the Archives output of theEXECblock and for
tasks of ohter control levels (Level1 , Level2 and
Level3). The only exception to the rule is the block
Qtask (not used here) representing very quick con-
trol task; there can be, at most, only one such task.

5.2 RexComp – Compiler of configurations

The RexComp program compiles a project main
file in .mdl format into a binary configuration file
of the REX control system. Note that the main file
exec.mdl configuration is shown in fig. 5. The com-
pilation process consists of the following steps:

(1) Finding of the real-time executive blockEXECin
the project main file, checking of the executive
parameters.

(2) Finding and checking of all control system ob-
jects which are drawn in the project main file.

(3) Addition of configuration objects: modules, drivers,
archives, the quick task and tasks of used com-
puting levels.

(4) Memory allocation and setting of configured
blocks parameters.

(5) Checking of control task connections.
(6) Whole configuration validation check.
(7) Storing of the compiled file with the extension

.rex on the disc.

During its run, the compiler writes out the information
about the files being compiled and about possible
compilation errors. Each of the described steps can
fail fatally, which results in compilation abort and the
binary file is not created.

Effective transition from simulation in Simulink to
realtime control is supported by the following two
rules ofRexComp:

(1) All subsystems (in.mdl files) the names of
which begin with the wordSimulation are
skipped (i.e. they are not compiled)

(2) All blocks From and Goto whoseTag is of
the form<prefix>__<name> are substituted

by standard input and output blocks of theREX
system. These blocks refer to the I/O driver block
with the name<prefix> . Further, the sym-
bolic name<name> of an input or an output
is searched in the driver configuration. The two
characters_ (underscore) serve as the separator
of a driver prefix and an input or an output vari-
able name in the driver.

The following example demonstrates how these rules
work. Due to rule 1, the subsystemSimulation
of the process is eliminated. Rule 2 determines
that the blockFrom with the tagEFA__AI_PV is
substituted by the standardREX input block which
refers to the signalAI_PV of the driver with the name
EFA in the project main file (see fig. 5). Similarly, the
block Goto with the tagEFA__AO_MVrefers to the
signalAO_MVof the same driver.

Keeping the rules above guarantees the possibility
of transition from real-time system simulation in
Simulink to real-time control inREX without the ne-
cessity of any configuration file change.

6. OPC (OLE FOR PROCESS CONTROL)
UTILIZATION

OPC is a relatively new but, at present, a very
widespread standard for automatic control devices
data exchange, especially for communication of pro-
cess stations and SCADA (Supervisory Control And
Data Acquisition) or HMI (Human Machine Interface)
levels. The currentREX version supports the OPC
Data Access Specification (OPC Foundation, 2000) in
two ways described below.

6.1 RexOPCsv – OPC server of theREX system

The first way is the OPC Data Access serverRex-
OPCsv, which can be seen in the bottomTarget
part of fig. 1, was created mainly for the purpose of
communication with a supervisory level. The supre-
visory system can be an arbitrary system which is
OPC Data Access version 2.0 client. Today, there are
tens of such systems on the market, some of them are
presented in fig. 1.

The structure shown in fig. 1 is applicable if the target
environment supports the DCOM standard, i.e. mainly
in the Windows operating systems. The server can also
be launched in the host platform; it is necessary for
target platforms supporting TCP/IP only. This struc-
ture is suitable for large networks (Internet) where
the gateways to local networks are protected against
unauthorized access (Firewalls). For this reason, the
DCOM packet transfer may be a problem.

6.2 OPCDrv – I/O driver communicating with third
party OPC servers

The OPCDrv I/O driver represents the second way
of OPC utilization inREX. In contrast to theRex-
OPCsv server, this driver is an OPC Data Access 2.0
client. Thanks to this fact,REX can read (write) inputs
(outputs) of arbitrary devices which are equipped with
OPC Data Access servers. There are hundreds of such
devices, produced by many companies, on the market.

7. CONCLUSION

The paper introduces a new control system called
REX which is compatible with Matlab-Simulink. Un-
der certain circumstances, described in section 5.2, it
is even possible to move from Simulink simulation
to REX real-time control and vice versa without any
configuration modification.

Using REX instead of Real Time Workshop (RTW)
or prototyping devices such as dSpace has several
advantages:

• Existence of industrial control blocksetRexLib.
• No need of software licenses for prototype de-

vices development.
• Low price of prototype and/or final control sys-

tem application.

The proposed solution is also suitable for the building
of real, remote and virtual laboratory control systems.

REFERENCES

OPC Foundation (2000).OLE for Process Control,
Data Access Custom Interface Standard, Version
2.04. OPC Foundation.

REX Controls (2004).Function blocks of the system
REX (in Czech). REX Controls s.r.o. Plzěn.

Schlegel, M., P. Balda and M.Šťetina (2001). C MEX
blocks industrial control library with application
examples. In:Summaries Volume of the Matlab
2001 Workshop. Humusoft s.r.o. Praha. pp. 361–
369.

Schlegel, M., P. Balda and M.Šťetina (2002). PID au-
totuner for industrial use. In:Proceedings of the
conference Control of power & heating systems.
Zlı́n, Czech Republic.

The Mathworks (2001).Using Simulink, Version 4.1.
Using Simulink, Version 4.1. Natick, MA.

