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Abstract: In this paper, a neuro-dynamic programming based optimal controller for
crop-greenhouse systems is proposed. The neurocontroller drives the crop-growth
development minimizing a predefined performance index, which considers minimi-
zation of the greenhouse operative costs and the final state errors under physical
constraints on process variables and actuator signals. In particular, it is applied to
guide the tomato-seedling crop development through control of a greenhouse micro-
climate. In the neurocontroller design process non-linear dynamic behavior of the
crop-greenhouse system and the July climate data of 1999 of San Juan, Argentina,
are considered. In order to show the practical feasibility and performance of the pro-
posed neurocontroller, simulation studies were carried out for the guidance of the
tomato-seedling crop.  &RS\ULJKW��������,)$&
Keywords: optimal control, neural networks, dynamic programming, agricultural
production management.

1. INTRODUCTION

Agricultural production management and control sys-
tems are becoming highly sophisticated and are be-
ginning to exploit many of the advanced methodolo-
gies and tools of industrial automation and modern
control systems theory, which integrates mechanical,
electronic, computer, and information systems. The
agricultural sector is one activity of the major impor-
tance in Argentina and management and control sys-
tems are an important subject of research.

The growth and development speeds of greenhouse
crops are affected by inside climatic conditions such
as temperature, humidity, carbon dioxide (CO2) and
solar radiation. These greenhouse microclimatic vari-
ables can be manipulated in order to guide the crop-
growth development reaching some predefined tech-
nical and economical objectives. For instance, to ob-
tain certain production according to a production
schedule within a predefined period and with the low-
est cost possible or greatest profits. In addition, the

final product should have certain characteristics im-
posed by the market such as weight, number of nodes,
number of leaves, color, size or others.

Another aspect to take into account is that each crop
imposes their own particular constraint to the ranges
of variation of climatic conditions; for instance, with
temperatures below a minimal level seedlings stop
growing, and with temperatures above a maximum
level they can suffer irreversible damage. Thus, it is
very important to reach internal climatic conditions
(set points) following an appropriated trajectory,
which takes the seedlings from an initial state to a
desired final state minimizing a cost index o cost
function, in a predefined time, and considering the
climate constraints imposed by the particular crop.
The generated trajectory will be optimal with respect
to that criterion function defined for each particular
case. Therefore, the main problem is to obtain an op-
timal decision policy in order to get that optimal set
points trajectories (Hwang and Jones, 1993). Solution
to that problem may be faced using optimal control



theory (Lewis and Syrmos, 1995; Kirk, 1970).

Several methods have been used to obtain optimal
trajectories of control variables in the guide of crop
growth, which in general are based on the Principle of
Maximum of Pontryagin (Ioslovich HW� DO, 1995; Se-
giner HW� DO, 1991; Seginer and McClendon, 1992).
Methods for sequential search of the optimal control
actions can be seen in Ioslovich HW� DO (1995), using
Linear Programming in Gutman HW� DO (1993), and
Dynamic Programming in Fullana and Schugurensky
(1999) and in Pucheta HW�DO�(2001).

In this paper, a neuro-dynamic programming based
optimal controller for crop-greenhouse systems is
proposed. Neuro-dynamic programming enables a
system to learn how to make good decisions by ob-
serving its own behavior and to improve its actions by
using a built-in mechanism through reinforcement
(Bertsekas and Tsitsiklis, 1996). This design method-
ology exploits the capability of neural networks for
learning nonlinear functions to solve the drawback of
the curse of dimensionality present in the dynamic
programming-based optimal control problems. The
proposed control law minimizes a predefined per-
formance index, considering the minimization of op-
erative costs and terminal state errors. The neurocon-
troller is able to guide the tomato-seedling crop de-
velopment under physical constraints on process vari-
ables and actuator signals (Lapilli HW�DO, 2001; Seginer
and McClendon, 1992). Tomato is an important crop
in the agricultural production at San Juan, Argentina.
The dynamic model of the crop-greenhouse system is
characterized by a set of nonlinear differential equa-
tions with boundaries and under strong external dis-
turbances, the July climate data of 1999 of San Juan
(Argentina) (Pucheta HW� DO, 2001), which is used to
design the neurocontroller minimizing operative costs
and final state error. The control law obtained in the
design process results suboptimal, due to the use of
neural networks to approximate both the optimal cost-
to-go function and the optimal policy.

In order to show the practical feasibility and perform-
ance of the proposed neurocontroller, simulation
studies were carried out for the tomato-seedling crop
development, which would ease the transition to ex-
perimentations on a scale model of a greenhouse
available in the Instituto de Automática’s laboratory.

2. PROBLEM FORMULATION

Jones (1991) develops a dynamic model of tomato
growth (the TOMGRO model), and shown that crop
development can be guided if suitable set points are
established to the environment variables, considering
that other factors as air RH, irrigation, nutrients, pesti-
cide have being managed, which do not influence on
the normal crop growth. In this work it is used the
tomato growth dynamic model proposed by Jones,
and to guide the crop growth two environment vari-
ables of the greenhouse are used as control actions,

temperature and CO2 concentration. The optimal con-
trol problem of the crop growth can be formulated as
follows. By considering the dynamic model of the
crop-greenhouse system, it is desired to obtain
autonomously a sequence of optimal control actions
(values of heater use and window opening and CO2

set points) such that the crop growth goes from an
arbitrary initial state condition to a desired final state
by minimizing a predefined costs functional.

The tomato crop growth can be characterized by non-
linear dynamic model with two-state variables, dry
weight and number of leaves,

(1)

where N(t) is the number of leaves and W(t) is the
total dry weight of the crop in [g m-2]. In addition,
r(T) is a piecewise linear temperature function, based
on the TOMGRO model, Rm(T) and Pg(T) (both as
function of the temperature T) are the sustainable res-
piration rate of the leaves in g [CH2O] g-1[tissue] h-1,
and the canopy gross photosynthesis rate in g [CH20]
m-2 [ground] h-1, respectively. The coefficient rm is the
maximum rate of leaf appearance per hour, and E is
the conversion efficiency of CH2O to plant tissue, g
[tissue] g-1[CH2].

The greenhouse modeled in (Lapilli HW�DO, 2001) by

(2)

where T and To are the internal and external tem-
perature [°C], respectively. The function So is the
global solar radiation in [W m-2], the coefficient b is
the global solar energy fraction that contributes to the
increase of T, b≅1m2, λ=0.45 is an empirical coeffi-
cient and U=0.5056 is the energy loss coefficient by
interacting with the environment in [W °C-1]. The
variables Fc and Qv are used as control actions, where
Fc = F.H(t) with H(t) ranging between 0 and 1, F is
the heating coefficient, 14.966 [W], and

32
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where V(t) is the windows action, dimensionless
ranging between 0 and 1.

This greenhouse model is an algebraic model that
does not have state variables, which control actions or
manipulated variables are the percentage of use of
heater, Fc, and opening windows, Qv.

The model of Eq. (2) considers that the heating and
ventilation variables are mutually precluding (one
excluding the other). Thus, the two manipulated vari-
ables, H(t) and V(t) -that range between 0 and 1- are
grouped into only one variable ranging between -1
and 1.
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(3)

The control of air moisture content within the green-
house is done independently. This is so because seed-
lings require minimal moisture content, and the need
to decrease it may eventually arise when the seedling
is almost ending the guidance process.

Equations (4) and (5) are the performance index and
the cost function to be minimized.

(4)

(5)

where:

[ ]Tddd Nw=[ is the desired final values for the

state variables,
Wd = 0.21 g m-2 the desired final dry weigh,
Nd = 3 desired number of leaves,
Λ, θ1 and θ2 are weighing coefficients with

Λ= 







0.050

01000
, θ1=50, θ2=50,

Pr is a nonlinear function to constrain the internal

temperature defined by

(6)

PW is a nonlinear function to avoid any overshoot in

the desired dry weight

(7)

( ) ( ) ( )[ ]Tf tCtCt =Y is the costs vector associated to

the control actions,
( ) ( ) cf PtHtC ⋅= , with Pc = $ 0.12 h-1 (cost of heater

action), ( ) 2co)t(2CO PKtC ⋅= , Pco2 is the cost of the C(t)

injector action. The expression of the proposed cost
function is plotted in Fig. 1, showing the cost ap-
proximation surface generated by the control actions.

In order to apply the neuro-dynamic programming in
the neurocontroller design it is necessary to replace
the continuous spaces of the problem by a discrete
space with a finite number of elements, involving a
finite number of states and decisions. Considering the
transformation of x into itself by the system equa-
tions, which is applied at different time instants,
k=0,1,…,N-1, to produce the sequence of states [[(0),[(1),…,[(N-1)]. The index k of that sequence will be
called the VWDJH� YDULDEOH� Thus, the evolution of the
process can be quantized in stages, denoted by k. The
dynamic programming algorithm, and in particular

neuro-dynamic programming, allows to deal with any
differential equation properly quantized.

Fig. 1. Cost function in terms of CO2 enrichment and
windows opening percentage.

Now, considering that the system model depends not
only upon the state [ and stage k, but also upon a de-
cision X. It is assumed that the decision u is selected
from a finite set of admissible decisions obtained
quantizing X to a finite number of vales. The sequence
of elements [X(0),X(1),…,X(N-1)] is called the deci-
sion or control action sequence, which has the associ-
ated monetary costs sequence [Y(0),Y(1),…,Y(N-1)].
Therefore, an immediate question that arises is the
determination of a rational for selecting the decision
sequence. Consequently, the Eq. (5) can be rewritten
as follows:

(8)

The performance index I([,[d,Y)k is evaluated along
each stage, called stage’s cost, and the optimal cost
functional will be the sum of the I([,[d,Y)k values
along all stages. And the optimal control problem
consists in determining an optimal decision sequence
to minimize (or maximize) J.

3. BACKGROUND IN NEURO-DYNAMIC
PROGRAMMING

The objective of dynamic programming is to evaluate
numerically the optimal cost-to-go function J*. This
computation can be done off-line, i.e., before the real
system begin operation. Fig. 2 shows the process
evolution from the stage k to k+1, which evolves from
state i to j by application of action X with an associ-
ated cost of I(i,X). Both i and j have the cost-to-go
value of J(i) and J(j), respectively. An optimal policy
µ, that is, an optimal decision of X for each i, is com-
puted either simultaneously with J*, or in real time
(Bertsekas, 1995; Casti and Larson, 1978) by mini-
mizing the right-hand side of Bellman’s equation (9).
It is well known, however, that for many important
problems the computational requirements of dynamic
programming are overwhelming, because the number
of states and control actions is very large �%HOOPDQ©VFXUVH� RI� GLPHQVLRQDOLW\�� In such situations is more
suitable to consider approximation or suboptimal

( ) ( ) ( ) 1kdkdkd ,,J,,I,,J ++= Y[[Y[[Y[[

( ) W2r1d PP,,I ⋅θ+⋅θ+⋅Λ= YY[[
( ) ( ) d

t

t

dd

f

d,,I,,J [[Y[[Y[[ −⋅Γ+τ= ∫

( ) ( ){ }
( ) ( ){ }

( ) 1ta1-where

ta,0maxtH

ta,0mintV

≤≤
=
−=

[ ]
[ ]









≤≤
<−
>−

=
36T8if0

8TifT8

36Tif36T

Pr

( )[ ] ( )


 >−

=
otherwise0

WtWifWtW
P dd

W



control schemes in order to reduce the computational
requirements.

I(i,u)

j
i

J(j)
J(i)

u

Fig. 2. Numerical computation scheme for stages k
and k+1.

(9)

Neuro-dynamic programming enables a system to
learn how to make good decisions by observing its
own behavior, and to improve its actions by using a
built-in mechanism through the use of an iterative
optimization scheme (Bertsekas and Tsitsiklis, 1996).
This is an alternative optimization method to deal
with the %HOOPDQ©V FXUVH�RI� GLPHQVLRQDOLW\, which is
based on approximations of the dynamic program-
ming algorithm. In addition, the neuro-dynamic pro-
gramming is an attractive and suitable technique to
design a simple control system, which can be imple-
mented using small equipment, and resulting low in-
vestments. This fact is an important factor to be con-
sidered when there is a low profit margin, as does
frequently in agriculture business.

Within the framework of the dynamic programming
algorithms used to evaluate the optimal cost-to-go
function is the 3ROLF\�,WHUDWLRQ algorithm. In order to
run the approximate policy iteration algorithm, an
initial policy is required. In practice, it is usually im-
portant that this policy be as good as possible through
heuristics or other considerations. In the absence of
such a policy, we may fix a parameter vector of the
neural network and then use a corresponding greedy
policy.

The policy iteration algorithm fixes a policy µ, evalu-
ates the associated cost-to-go function Jµ, and then
performs a policy update. This methodology is often
called as DFWRU�FULWLF�systems. The actor uses a policy
µ to control the system, while the critic observes the
consequences and tries to compute Jµ. In addition, the
actor uses the Jµ, received from the critic, in order to
update its policy. For the standard version of policy
iteration, the policy or control law µ is fixed for a long
time and the critic’s computations converge to Jµ. At
that point, the limit Jµ is passed to the actor who takes
Jµ into account and forms a new policy, by performing
the minimization in the right-hand side of Bellman’s
equation; that is, at each state j, an action X is chosen
that minimizes the proposed cost function.

In this work, the neurocontroller inputs are dry weight
of the tomato-seedling crop, number of leaves, and
stage. The outputs are the heater use or windows
opening a(t), associated to temperature, defined by (3),
and the CO2 concentration.

A simulation study has been carried out using the
crop-greenhouse system dynamic model presented in
Section 2 in order to show the feasibility and per-
formance of the proposed neurocontroller. In particu-
lar, it is considered the tomato seedlings growth and
the July weather data of 1999 of San Juan (Argentina)
as external climate. The field experience in San Juan
has shown that a good tomato seedling must have a
dry weight of 0.21 g and a number of leaves of three.
Thus, 0.21 g and 3 leaves are the final state to be
reached by the optimal trajectory of the control ac-
tions. The dry weight was constrained to the 0 – 0.21
g range, and T(k) in the range of 8 oC and 30 oC,
which is the admissible temperature range for toma-
toes.
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Fig. 3. Actor/critic scheme of the neurocontroller.

The two networks (CRITIC and ACTOR) are all im-
plemented using multilayer feedforward neural net-
works of two layers with 9 neurons in the hidden
layer. The neural network actor has 3 inputs, dry
weight of the tomato seedling, number of leaves, and
stage, and two outputs a(t) and CO2 concentration.
The CRITIC has the same inputs and one output, the
cost-to-go function approximation. The CRITIC net-
work output J, and the ACTOR network output X are
trained according to the scheme presented in Section
3. The performance index and the cost function to be
minimized were given by (4) and (5) respectively. The
neural network structures are shown in Fig. 3. The
Levenberg-Marquardt ’s algorithm was used to train
the neural networks (Bishop, 1995; Nørgaard, 1997).
After the training process the ACTOR neural network
is used on line to control the crop-greenhouse system
according to Fig. 4.

( ) ( ) ( ) 1kkk jJ,iIiJ ++= X



Neurocontroller
ACTOR

X [(k)

Crop – Greenhouse
System

Fig. 4. Scheme of the on-line optimal control.

4. NUMERICAL RESULTS

The following figures show the crop-greenhouse sys-
tem’s evolution under several conditions, imposed by
the San Juan real weather during July of 1999. The
solid line trajectories (Calculated) corresponds to
the crop evolution (evolution of plant dry weight and
number of leaves) considering the weather signal
without perturbations. Fig. 5 represents the system
evolution considering modifications in the weather
model (system under perturbations). The dotted line
trajectories (…5 days error) and dash-dot lines (-.-.-4
days error), show the effects of weather changes when
it is shifted a fixed quantity (4 or 5) days from the
present date.

Fig. 5. Evolution of the crop state variables.

Fig. 6 Final evaluation of the approximated optimal
policy.

The performance of the on-line neurocontroller dete-
riorates when changes the meteorological condition
with respect to those used in the off-line calculation.
The FRUUHODWLRQ concept is used to measure the differ-
ence between the meteorological conditions of calcu-
lation (off-line, Fig. 3) and those imposed at the mo-
ment of the on-line control (Fig. 4). It is an useful

concept to determine the similarity between signals
(Oppenheim HW�DO, 1997). Thus, in the first case (FRU�UHODWLRQ) the similarity is 100%, whereas for the other
cases (FURVV�FRUUHODWLRQ) it decreases to 85.3%, 80.6%
and 76.1%. Fig. 7 shows the evolution of the climate
external to the greenhouse (temperature and global
solar radiation), control action and cost accumulation.

In order to evaluate the influence of meteorological
factors into the performance of the approximated op-
timal control law simulations were carried out gener-
ating disturbances into the outside temperature and
global solar radiation. In Fig. 5 is presented the evo-
lution of the state variables. Fig. 7 and Fig. 9 show the
external perturbations (external temperature and
global solar radiation), control action (using the heater
-positive control action- and percentage of opening
window -negative control action), and the cost accu-
mulation respectively. Fig. 8 shows the evolution of
neural networks parameters and cost function per-
formance. Finally, Fig. 6 shows the approximate op-
timal policy evaluation.

Fig. 7. Evolution of greenhouse variables, outside and
inside temperatures, internal CO2 concentration,
Heater use (a(t)>0) and opening windows
(a(t)<0).

Fig. 8 Evolution of neural network parameters, cost
function performance and values of Jµ(0).



5. COSTS EVALUATION

By observing the obtained numerical results of the on-
line neurocontroller’s performance under climatic
conditions different from those were used in its cal-
culation, the system’s operative cost (Fig. 9) grows
from $7.18 to $10, while the similarity degree among
the conditions decrease (from 100%) to 76.1%.

Fig. 9 Evolution of different cost factors: cost accu-
mulation and global solar radiation.

6. CONCLUSIONS

A neuro-dynamic programming-based optimal con-
troller for crop-greenhouse systems has been pro-
posed. The obtained neurocontroller is suboptimal due
to use of neural network for approximations. The neu-
rocontroller is able to drive the crop-growth develop-
ment minimizing a predefined performance index,
which considers minimization of the greenhouse op-
erative costs and the final state errors under physical
constraints on process variables and actuator signals.
In particular, it was applied to guide the tomato-
seedling crop development through control of a
greenhouse microclimate. In the neurocontroller de-
sign process nonlinear dynamic behavior of the crop-
greenhouse system and the July climate data of 1999
of San Juan, Argentina, were considered. The ob-
tained control law is suboptimal due to the use of neu-
ral networks to approximate both the optimal cost-to-
go function and optimal policy. In order to show the
practical feasibility and performance of the proposed
neurocontroller, simulation studies were carried out
for the tomato-seedling crop development, which
would ease the transition to experimentations on a
scale model of a greenhouse available in the Instituto
de Automática’s laboratory. Studies results shown
that the cost accumulation tends to increase when do
the forecast error (external temperature and solar ra-
diation perturbations). The implementation of this
control strategy for guiding the crop growth requires a
low cost installation. The obtained control law is sim-
ple, and minimizes the operative costs involve along
the control process evolution. Results from simulation

shown a satisfactory control system performance of
the tomato-seedling crop-greenhouse system.
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