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Abstract: This paper presents a new neuro-fuzzy controller for robot manipulators. First, an 
inductive learning technique is applied to generate the required modelling rules from 
input/output measurements recorded in the off-line structure learning phase. Second, a fully 
differentiable fuzzy neural network is developed to construct the inverse dynamics part of 
the controller for the on-line parameter learning phase. Finally, a fuzzy-PID-like incremental 
controller was employed as feedback servo-controller. The proposed control system was 
tested using dynamic model of a six-axis industrial robot. The control system showed good 
results compared to the conventional-PID individual joint controller. Copyright© 2005 IFAC 

 
Keywords: Dynamic systems, Fuzzy systems, Fuzzy-PID controllers, Neuro-fuzzy systems, 
Robot manipulators. 

 
 
 
 

 
1. INTRODUCTION 

 
 Selecting the structure and initial parameters of a 
neural network is a tedious work in dynamic systems 
modelling. This paper presents an adaptive neuro-
fuzzy modelling and control system for robot 
manipulators based on input/output measurements 
(Er et al., 1997; Wang and Mendel, 1992). For this 
purpose, an inductive fuzzy learning technique 
introduced by Bigot (2003), was modified and used 
for fuzzy rule generation during the off-line structure 
learning phase. A fully differentiable fuzzy neural 
network was developed to construct the inverse 
dynamics part of the controller. A fuzzy-PID-like 
incremental controller introduced by Shankir (2001) 
was modified and used as feedback servo-controller. 
The proposed control system was tested using the 
virtual dynamic model of the Puma 560 robot arm. 
 
The remainder of the paper is organized as follows. 
Section (2) outlines the virtual dynamic modelling 
process for the robot arm. Section (3) presents the 
overall structure of the proposed neuro-fuzzy 
controller and the neuro-fuzzy network. Section (4) 
describes the structure of the fuzzy-PID-like 
incremental feedback servo-controller and the on-line 
parameters learning phase. Section (5) compares the 

results of applying the proposed control system with 
those obtained with a conventional-PID individual 
joint controller. Section (6) concludes the paper. 
 
 

2. VIRTUAL DYNAMIC MODEL  
 
The parameters listed in (Armstrong and Corke, 
1994), were employed to construct the virtual 
geometrical model as shown in Figure (1) using the 
engineering design software Pro/Engineer®. 
 

Fig.1. Dynamic model for the Puma 560 robot. 



This geometrical model was then imported to the 
virtual dynamic modelling software Pro/Mechanica® 
where all connections between bodies, joint-
reactions, weights, static and dynamic loads and 
frictions, etc. can be specified. Pro/Mechanica® also 
allows users to write control subroutines using C++, 
which can be linked to the dynamic model. 
Input/output data were collected by applying various 
trajectories to suitably tuned P-controllers, as shown 
in figure (2). The collected data consist of the 
sampled applied torque, joint angles, joint velocities, 
and the Cartesian position of the end effector.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Data collection test for the robot arm. 
 
 

3. PROPOSED NEURO-FUZZY CONTROLLER  
 
The structure of the proposed neuro-fuzzy control 
system as shown in Figure (3) resembles the additive 
feedforward control system presented in Craig 
(1996). The system consists of a forward path 
controller in addition to a feedback path controller.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Proposed controller structure. 
 
The forward path controller is a neuro-fuzzy inverse 
dynamics model for the robot arm. The first step is to 
generate this model off-line from input/output 
measurements using a fuzzy inductive learning 
algorithm introduced by Bigot (2003). This algorithm 
is designed to extract fuzzy IF-THEN rules from a 
collection of examples (training set). Initially, a 

manual step is performed to divide the output 
variable domain into target classes (fuzzy output 
membership functions, CE). Here, each output 
variable is divided into eleven equal, 50% 
overlapping Gaussian membership functions as 
shown in figure (4). Each example (E) (input record) 
is described in terms of a fixed set of m (no. of 
inputs) attributes ( 1A , 2A , …, mA ) (equivalent to 
linguistic variables) and by a class (output) value 
(CE). The number of output membership functions 
can be regarded as the degree of precision of the 
model. The higher this number is, the larger the 
number of rules and the higher the precision. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Selected output membership function. 
 

A range of values ( i
minV , i

maxV ), equivalent to 
linguistic membership functions, is assigned to the ith 
attribute. Each created rule is composed of a number 
of conditions on each (or some of the) attribute(s) 
(Cdti) and by its class value (Crule). Each rule can be 
represented as Cdt1 ∧ Cdt2 ∧ ... ∧ Cdtm ⇒ Crule. Each 
condition takes the form ( i

minV ≤ A i
 ≤

i
maxV ). In order 

to create a rule set, the algorithm incrementally 
employs a specific rule forming process until all 
examples are covered. Three particular steps of this 
process are of interest to the development of the 
fuzzy inductive learning algorithm. The first step in 
this process is to select a seed example (SE), which is 
the first example in the list not covered by previously 
created rules where the degree of belonging of its 
output value to the rule output fuzzy set (FSE (a, b, c)) 
is a maximum and ≥ 0.5. Then, the output class value 
(output fuzzy set) of the SE is used as the target class 
for the rule to be created. For instance, for a Gaussian 
membership function, the output membership 
function will be the fuzzy set (FSE (a, b, c)) in which 
the membership degree will be maximum. In the 
particular case of 50% overlapping membership 
functions, where the membership degree is equal to 
0.5 for two adjacent membership functions, only one 
of them is considered. The second step employs a 
specific search process to create a consistent and 
general rule covering the SE. The main feature of this 
search is that the conditions (membership functions) 
for inputs are created automatically during the rule 
forming process. The result is a rule where all 
conditions will take the form ( i

minV < Ai
 <

i
maxV ). The 

third and final step employs a post-processing 
technique that reduces the coverage of some attribute 
to the training data range only.  
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The search mechanism looks for rules that cover as 
many examples as possible from the target class and 
at the same time exclude examples belonging to other 
classes. The rule formation starts with a condition 
excluding the closest example not belonging to the 
target class. To find the closest example, a measure is 
used to assess the distance between any two 
examples for the ith continuous attribute as:  
 

D1&2 = ( )
c

2
Attr_Value_Ex.1 - Attr_Value_Ex.2

Max_Attr_Value - Min_Attr_Value
∑    (1) 

 

where ∑
c

is the sum over all attributes in the 

examples, Attr_Value_Ex1 and Attr_Value_Ex2 are 
the values of ith attribute in these two examples, and 
Max_Attr_Value and Min_Attr_Value are the 
maximum and minimum values for the ith attribute.  
 
By applying this procedure, the algorithm handles 
continuous measurements collected from the robot 
arm. At the end of the rule formation process, each 
condition takes the form ( i

1V  < Ai < i

2V ), where i

1V  

and i

2V  are continuous values included in the ith 

attribute range ( i
minV , i

maxV ). After the rule forming 
process, each continuous condition is transformed 
into a fuzzy condition using the following method in 
order to obtain the final fuzzy rule. Consider the 
condition ( i

1V < Ai < i

2V ). This can be transformed 
into a membership function F (a, b, c), where a, b, 
and c can be defined as follows: 
 

- If i

1V  and i

2V  exist and are real numbers, then 

a= i

1V , b= i

2V , and c = ( i

1V + i

2V )/2. 

- If i

1V = -∞ , then a = -∞, b = i

2V , and c = i
minV , which 

is the minimum known value of the attribute. 
- If i

2V = +∞, then a = i

1V , b = +∞, and c = i
maxV , 

which is the maximum known value of the 
attribute. 

 
In this way, these values can be then employed to 
generate equivalent Gaussian and sigmoidal 
membership functions to be used in the Mamdani-
type neuro-fuzzy network as shown in figure (5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Types of generated input membership 

functions. 

Inverse Dynamics Network 
 
To model the inverse dynamics of the robot arm in a 
Mamdani-type neuro-fuzzy network using the data 
recorded, a fuzzy rule-base that represents the inverse 
dynamics of the robot arm is generated first using the 
aforementioned inductive learning algorithm. 
Equation (2) expresses an approximate relation 
between the desired joint angles trajectories, the 
required joint torques, and the current joint variables 
of the robot, 
 
  Ti

k+1 ≅ f (T1
k,..., Tn

k,θ1
k+1,..., θn

k+1, θ1
k,..., θn

k, v1
k+1, 

                                   ..., vn
k+1 ,v1

k,..., vn
k)                (2) 

 
where k is the sampling interval, i = (1,2,..., n), n is 
the number of links, T is the joint torque, v is the joint 
velocity, and θ  is the joint angle. 
 
Using equation (2), three sets of fuzzy rules can be 
generated representing the robot inverse dynamics. 
Each set expresses a joint torque trajectory required 
to achieve the joint angle trajectories as a function of 
these trajectories and previous recorded values of 
these trajectories forming a 12-input single-output 
relationship. The entire training set is composed of 
39,821 examples. All outputs have been decomposed 
into 11 Gaussian membership functions. The 
resulting model is composed of 85 rules for the 
prediction of T1, 92 rules for the prediction of T2 and 
51 rules for the prediction of T3, totaling 228 rules 
performing the prediction of all outputs compared to 
more than fourteen hundred rules using the method 
proposed by Wang and Mendel, (1992).  
 
The proposed neuro-fuzzy network is a 
representation of the Mamdani-model-based 
feedforward fuzzy neural network (FFNN). The 
neural network employs time-delayed feedback from 
the output layer to the input. The selected Gaussian 
and sigmoidal membership functions are 
differentiable and their parameters (a, b, and c) can 
be tuned on-line. Furthermore in order to achieve 
effective application of the back-propagation learning 
method, the network employs differentiable 
alternatives for the logic-min and logic-max functions 
in its decision-making mechanism termed softmin 
and softmax (Shankir, 2001). 
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where ai is the ith argument, µ=
ii Aa , 1= −i ia a , and 

the parameter γ controls the softness of the softmin 
function. As γ ⇒ ∞, softmin ⇒ logic-min and 
softmax ⇒ logic-max. 
 
Figure (6) presents the structure of the proposed 
network consisting of six-layers. The first four layers 
have the same structure as the first four layers in (Lin 
and Lee, 1991). The defuzzification function is 
represented using the last two layers. The softmin and 
softmax functions are used as layer (3) and layer (4) 
activation functions respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6. Structure of the proposed neuro-fuzzy 
network. 

 
 

4. FUZZY-PID-LIKE SERVO-CONTROLLER 
 
This controller employs two inputs, present and 
previous errors, and three outputs, P, I, and D. Each 
output element can approximate the corresponding 
(functional) control action with independent non-
linear gain. The input and output universe of 
discourses are partitioned using five triangular fuzzy 
membership functions with 50% overlap as shown in 
figure (7) and figure (8).  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The proportional, derivative and incremental part of 
the integral control actions of the fuzzy-PID-like 
incremental controller are functions of the two 
present and past normalized error variables, ( )e KT  

and ( )−e KT T . Consequently, 
 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

I

D I

UU

(5)   
PID P

KT e KT ,e KT-TKT T f

e KT ,e KT-T  e KT ,e KT-Tf f

= +−

+

+

 
where the three functions Pf , Df , and If  are the 
proportional, derivative and incremental integral 
functions to be implemented using the fuzzy logic 
controller and UI (KT-T) is the past output of the 
integral controller element. The partitions of the 
output universe of discourses are with different 
scaling factors to allow different tuning for each 
control element. The design values were set to L=0.3, 
LP=0.2, LD=0.15, and LI=0.05.  
 
The fuzzy rules of the Fuzzy Proportional Control 
Element (FPCE) are generated heuristically based on 
the intuitive concept that the proportional control 
action at any time step is directly proportional to the 
error 1e  at the same time step regardless of the value 

of the error at the previous time step 2e . Therefore, if 

the error variable 1e  is expressed linguistically as 
positive small, the proportional control action can be 
expressed linguistically positive small and so on. The 
fuzzy rules of the Fuzzy Derivative Control Element 
FDCE are generated based on the intuitive concept 
that the derivative control action at any time step is 
directly proportional to the rate of change of the error 
(difference) between two successive time steps. 
Therefore, if the error variables 1e  and 2e  are both 
expressed linguistically as positive, the derivative 
control action can be expressed linguistically as zero 
and so on. The integral control action is composed of 
two parts. The first part is the controller output 
history ( )I KT-TU , while the second part is the 
incremental output of the 
controller ( )1 2 = ∆I I KTf ( e ,e ) U . The fuzzy rules 
of the Fuzzy incremental Integral Control Element 
(FICE) are generated based on the intuitive concept 
that the incremental part of the integral control action 
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at a time step is directly proportional to the sum of 
the error variables at two successive time steps. 
Therefore, if the error variables 1e  and 2e  are 
expressed linguistically as positive and negative, the 
incremental part of the integral control action can be 
expressed linguistically as zero and so on. The rule 
base of the three incremental FCEs (P, D, and I) can 
be combined together to form one rule base for the 
fuzzy-PID-like incremental servo controller output as 
listed in the table below. The total servo-controller 
output can be represented as: 

PID NP ND 1 2 NI 1 21= ( - ) + ( + )+U k e k e e k e e            (6) 

where kNP, kND, and kNI are the equivalent non-linear 
gains that can be defined according to the input 
condition. 
 

e1 e2 P-element D-element I-element 
NL NL NL ZE NL 
NS NL NS PS NL 
ZE NL ZE PL NL 
PS NL PS PL NS 
PL NL PL PL ZE 
NL NS NL NS NL 
NS NS NS ZE NL 
ZE NS ZE PS NS 
PS NS PS PL ZE 
PL NS PL PL PS 
NL ZE NL NL NL 
NS ZE NS NS NS 
ZE ZE ZE ZE ZE 
PS ZE PS PS PS 
PL ZE PL PL PL 
NL PS NL NL NS 
NS PS NS NL ZE 
ZE PS ZE NS PS 
PS PS PS ZE PL 
PL PS PL PS PL 
NL PL NL NL ZE 
NS PL NS NL PS 
ZE PL ZE NL PL 
PS PL PS NS PL 
PL PL PL ZE PL 

 
 
Feedback-Error Learning Scheme 
 
Kawato et al., (Kawato et al., 1988) proposed a novel 
architecture for adaptive control called the Feedback 
Error Learning (FEL) control technique. The novelty 
of the FEL method lies in its use of feedback error as 
a teaching signal for learning the inverse model. This 
scheme ensures that on-line training will stop only 
when the feedback error is zero. This behaviour 
resembles the integration action in integral 
controllers so that only the incremental part of the 
integral control element is used in the proposed 
feedback servo-controller. The neuro-fuzzy forward 
path controller parameters are tuned on-line using the 
feedback controller response as the error signal. The 
network adjustable free parameters were selected to 
be centres of the output membership functions of the 
output term nodes in layer four as well as the link 
weights at layers two and six. Fukuda et al., (1990) 
proposed a variable learning method for robotic 

manipulators neural network controllers called 
“Fuzzy Turbo”, based on fuzzy set theory to avoid 
stagnation during learning. In this method, a linear-
PID feedback controller is used with the feedforward 
controller. In (Arabshahi et al., 1992), fuzzy control 
of the learning rate η  is suggested. The idea behind 
fuzzy control of the learning rate is the 
implementation of the heuristics used for faster 
convergence in terms of fuzzy IF-THEN rules. 
However, there is still no general guidance for the 
proper selection of the learning rate and one can say 
it is case-dependent. In this work, the fuzzy-PID-like 
incremental feedback controller along with a fixed 
learning rate provides the general non-linear policy 
of the controller and learning signal as well. Weight 
changes are performed at the kth iteration as, 

       ( )  i

k FB

i
FF k kw T T w wη∆ = ∗ ∂ ∂              (7) 

where Ti
FF is the feedforward torque at robot link i, 

Ti
FB  is the feedback torque at robot link i, wk is the 

vector of weight values after the kth iteration, ∆wk is 
the change in these weights, and η is the learning 
rate. The chain rule is then applied to calculate the 
network output partial derivatives with respect to the 
variable weights at each layer.  
 
 

5. RESULTS 
 
The proposed control system was tested on the first 
three links of the Puma 560 robot. For comparison 
purposes, a conventional-PID controller, tuned to 
produce the most acceptable performance, was used 
to control the robot over a sinusoidal trajectory for 
each link, while the arm was carrying a fixed payload 
of 7.0 kg 
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Fig.9. Neuro-fuzzy controller tracking errors. 
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Fig.10. Conventional-PID controller tracking errors. 

 
 

Figure (9) presents the position tracking errors for the 
suggested neuro-fuzzy controller, while figure (10) 
shows the tracking errors for the conventional-PID 
controller. 

 
6. CONCLUSION 

 
A new technique for modelling and control for robot 
manipulators was presented. An inductive learning 
technique is employed to construct the forward path 
inverse controller using input/output measurements, 
in the form of a new neuro-fuzzy network. A new 
fuzzy-PID-like incremental feedback controller was 
incorporated in the control system. A feedback error 
learning scheme was used to tune the network 
weights on-line. It can be observed from the obtained 
results that the proposed method gave better tracking 
accuracies non achievable with the conventional-PID 
controller. 
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