

NEURO-FUZZY MODELLING AND CONTROL OF ROBOT MANIPULATORS
 FOR TRAJECTORY TRACKING

D. T. Pham and A. A. Fahmy

Manufacturing Engineering Centre, Cardiff University, Cardiff CF24 0YF, U.K.

Abstract: This paper presents a new neuro-fuzzy controller for robot manipulators. First, an
inductive learning technique is applied to generate the required modelling rules from
input/output measurements recorded in the off-line structure learning phase. Second, a fully
differentiable fuzzy neural network is developed to construct the inverse dynamics part of
the controller for the on-line parameter learning phase. Finally, a fuzzy-PID-like incremental
controller was employed as feedback servo-controller. The proposed control system was
tested using dynamic model of a six-axis industrial robot. The control system showed good
results compared to the conventional-PID individual joint controller. Copyright© 2005 IFAC

Keywords: Dynamic systems, Fuzzy systems, Fuzzy-PID controllers, Neuro-fuzzy systems,
Robot manipulators.

1. INTRODUCTION

 Selecting the structure and initial parameters of a
neural network is a tedious work in dynamic systems
modelling. This paper presents an adaptive neuro-
fuzzy modelling and control system for robot
manipulators based on input/output measurements
(Er et al., 1997; Wang and Mendel, 1992). For this
purpose, an inductive fuzzy learning technique
introduced by Bigot (2003), was modified and used
for fuzzy rule generation during the off-line structure
learning phase. A fully differentiable fuzzy neural
network was developed to construct the inverse
dynamics part of the controller. A fuzzy-PID-like
incremental controller introduced by Shankir (2001)
was modified and used as feedback servo-controller.
The proposed control system was tested using the
virtual dynamic model of the Puma 560 robot arm.

The remainder of the paper is organized as follows.
Section (2) outlines the virtual dynamic modelling
process for the robot arm. Section (3) presents the
overall structure of the proposed neuro-fuzzy
controller and the neuro-fuzzy network. Section (4)
describes the structure of the fuzzy-PID-like
incremental feedback servo-controller and the on-line
parameters learning phase. Section (5) compares the

results of applying the proposed control system with
those obtained with a conventional-PID individual
joint controller. Section (6) concludes the paper.

2. VIRTUAL DYNAMIC MODEL

The parameters listed in (Armstrong and Corke,
1994), were employed to construct the virtual
geometrical model as shown in Figure (1) using the
engineering design software Pro/Engineer®.

Fig.1. Dynamic model for the Puma 560 robot.

This geometrical model was then imported to the
virtual dynamic modelling software Pro/Mechanica®
where all connections between bodies, joint-
reactions, weights, static and dynamic loads and
frictions, etc. can be specified. Pro/Mechanica® also
allows users to write control subroutines using C++,
which can be linked to the dynamic model.
Input/output data were collected by applying various
trajectories to suitably tuned P-controllers, as shown
in figure (2). The collected data consist of the
sampled applied torque, joint angles, joint velocities,
and the Cartesian position of the end effector.

Fig.2. Data collection test for the robot arm.

3. PROPOSED NEURO-FUZZY CONTROLLER

The structure of the proposed neuro-fuzzy control
system as shown in Figure (3) resembles the additive
feedforward control system presented in Craig
(1996). The system consists of a forward path
controller in addition to a feedback path controller.

Fig.3. Proposed controller structure.

The forward path controller is a neuro-fuzzy inverse
dynamics model for the robot arm. The first step is to
generate this model off-line from input/output
measurements using a fuzzy inductive learning
algorithm introduced by Bigot (2003). This algorithm
is designed to extract fuzzy IF-THEN rules from a
collection of examples (training set). Initially, a

manual step is performed to divide the output
variable domain into target classes (fuzzy output
membership functions, CE). Here, each output
variable is divided into eleven equal, 50%
overlapping Gaussian membership functions as
shown in figure (4). Each example (E) (input record)
is described in terms of a fixed set of m (no. of
inputs) attributes (1A , 2A , …, mA) (equivalent to
linguistic variables) and by a class (output) value
(CE). The number of output membership functions
can be regarded as the degree of precision of the
model. The higher this number is, the larger the
number of rules and the higher the precision.

Fig.4. Selected output membership function.

A range of values (i
minV , i

maxV), equivalent to
linguistic membership functions, is assigned to the ith
attribute. Each created rule is composed of a number
of conditions on each (or some of the) attribute(s)
(Cdti) and by its class value (Crule). Each rule can be
represented as Cdt1 ∧ Cdt2 ∧ ... ∧ Cdtm ⇒ Crule. Each
condition takes the form (i

minV ≤ A i
 ≤

i
maxV). In order

to create a rule set, the algorithm incrementally
employs a specific rule forming process until all
examples are covered. Three particular steps of this
process are of interest to the development of the
fuzzy inductive learning algorithm. The first step in
this process is to select a seed example (SE), which is
the first example in the list not covered by previously
created rules where the degree of belonging of its
output value to the rule output fuzzy set (FSE (a, b, c))
is a maximum and ≥ 0.5. Then, the output class value
(output fuzzy set) of the SE is used as the target class
for the rule to be created. For instance, for a Gaussian
membership function, the output membership
function will be the fuzzy set (FSE (a, b, c)) in which
the membership degree will be maximum. In the
particular case of 50% overlapping membership
functions, where the membership degree is equal to
0.5 for two adjacent membership functions, only one
of them is considered. The second step employs a
specific search process to create a consistent and
general rule covering the SE. The main feature of this
search is that the conditions (membership functions)
for inputs are created automatically during the rule
forming process. The result is a rule where all
conditions will take the form (i

minV < Ai
 <

i
maxV). The

third and final step employs a post-processing
technique that reduces the coverage of some attribute
to the training data range only.

Actuating Joint-
Torque

Current Joint-
Angles

Virtual Model
For Puma 560
 Robot Arm

+

-

P-
Controllers

Joint-Angles
Trajectories
(θ1, θ2, θ3)

Forward Kinematics,
Time Delay, and

Data Storage

On-line
Adaptation

FPID Servo
Controller

Back-propagation
Feedback-error

Learning

1−z

Robot
Arm

Inverse
dynamics

model

d
dt

d
dt

1−z
-

-

+

+

+

+

θd

θm

1

µ(x)

x

The search mechanism looks for rules that cover as
many examples as possible from the target class and
at the same time exclude examples belonging to other
classes. The rule formation starts with a condition
excluding the closest example not belonging to the
target class. To find the closest example, a measure is
used to assess the distance between any two
examples for the ith continuous attribute as:

D1&2 = ()
c

2
Attr_Value_Ex.1 - Attr_Value_Ex.2

Max_Attr_Value - Min_Attr_Value
∑ (1)

where ∑
c

is the sum over all attributes in the

examples, Attr_Value_Ex1 and Attr_Value_Ex2 are
the values of ith attribute in these two examples, and
Max_Attr_Value and Min_Attr_Value are the
maximum and minimum values for the ith attribute.

By applying this procedure, the algorithm handles
continuous measurements collected from the robot
arm. At the end of the rule formation process, each
condition takes the form (i

1V < Ai < i

2V), where i

1V

and i

2V are continuous values included in the ith

attribute range (i
minV , i

maxV). After the rule forming
process, each continuous condition is transformed
into a fuzzy condition using the following method in
order to obtain the final fuzzy rule. Consider the
condition (i

1V < Ai < i

2V). This can be transformed
into a membership function F (a, b, c), where a, b,
and c can be defined as follows:

- If i

1V and i

2V exist and are real numbers, then

a= i

1V , b= i

2V , and c = (i

1V + i

2V)/2.

- If i

1V = -∞ , then a = -∞, b = i

2V , and c = i
minV , which

is the minimum known value of the attribute.
- If i

2V = +∞, then a = i

1V , b = +∞, and c = i
maxV ,

which is the maximum known value of the
attribute.

In this way, these values can be then employed to
generate equivalent Gaussian and sigmoidal
membership functions to be used in the Mamdani-
type neuro-fuzzy network as shown in figure (5).

Fig.5. Types of generated input membership

functions.

Inverse Dynamics Network

To model the inverse dynamics of the robot arm in a
Mamdani-type neuro-fuzzy network using the data
recorded, a fuzzy rule-base that represents the inverse
dynamics of the robot arm is generated first using the
aforementioned inductive learning algorithm.
Equation (2) expresses an approximate relation
between the desired joint angles trajectories, the
required joint torques, and the current joint variables
of the robot,

 Ti

k+1 ≅ f (T1
k,..., Tn

k,θ1
k+1,..., θn

k+1, θ1
k,..., θn

k, v1
k+1,

 ..., vn
k+1 ,v1

k,..., vn
k) (2)

where k is the sampling interval, i = (1,2,..., n), n is
the number of links, T is the joint torque, v is the joint
velocity, and θ is the joint angle.

Using equation (2), three sets of fuzzy rules can be
generated representing the robot inverse dynamics.
Each set expresses a joint torque trajectory required
to achieve the joint angle trajectories as a function of
these trajectories and previous recorded values of
these trajectories forming a 12-input single-output
relationship. The entire training set is composed of
39,821 examples. All outputs have been decomposed
into 11 Gaussian membership functions. The
resulting model is composed of 85 rules for the
prediction of T1, 92 rules for the prediction of T2 and
51 rules for the prediction of T3, totaling 228 rules
performing the prediction of all outputs compared to
more than fourteen hundred rules using the method
proposed by Wang and Mendel, (1992).

The proposed neuro-fuzzy network is a
representation of the Mamdani-model-based
feedforward fuzzy neural network (FFNN). The
neural network employs time-delayed feedback from
the output layer to the input. The selected Gaussian
and sigmoidal membership functions are
differentiable and their parameters (a, b, and c) can
be tuned on-line. Furthermore in order to achieve
effective application of the back-propagation learning
method, the network employs differentiable
alternatives for the logic-min and logic-max functions
in its decision-making mechanism termed softmin
and softmax (Shankir, 2001).

i

n

n

ii
=1

i

=1

i

i

softmin(i = 1, 2, ..., n

-γaa e

-γae

a ,) =
∑

∑
 (3)

i

=1
i

=1

n
-γ

i
n

-γ

i

()

i

i
oftmax , i = 1, 2, ..., n =

a

a
s a 1 -

a e

e

∑

∑
 (4)

1

µ(x)

x
b b bc ca a

where ai is the ith argument, µ=
ii Aa , 1= −i ia a , and

the parameter γ controls the softness of the softmin
function. As γ ⇒ ∞, softmin ⇒ logic-min and
softmax ⇒ logic-max.

Figure (6) presents the structure of the proposed
network consisting of six-layers. The first four layers
have the same structure as the first four layers in (Lin
and Lee, 1991). The defuzzification function is
represented using the last two layers. The softmin and
softmax functions are used as layer (3) and layer (4)
activation functions respectively.

Fig.6. Structure of the proposed neuro-fuzzy
network.

4. FUZZY-PID-LIKE SERVO-CONTROLLER

This controller employs two inputs, present and
previous errors, and three outputs, P, I, and D. Each
output element can approximate the corresponding
(functional) control action with independent non-
linear gain. The input and output universe of
discourses are partitioned using five triangular fuzzy
membership functions with 50% overlap as shown in
figure (7) and figure (8).

The proportional, derivative and incremental part of
the integral control actions of the fuzzy-PID-like
incremental controller are functions of the two
present and past normalized error variables, ()e KT

and ()−e KT T . Consequently,

() () () ()()
() ()() () ()()

I

D I

UU

(5)
PID P

KT e KT ,e KT-TKT T f

e KT ,e KT-T e KT ,e KT-Tf f

= +−

+

+

where the three functions Pf , Df , and If are the
proportional, derivative and incremental integral
functions to be implemented using the fuzzy logic
controller and UI (KT-T) is the past output of the
integral controller element. The partitions of the
output universe of discourses are with different
scaling factors to allow different tuning for each
control element. The design values were set to L=0.3,
LP=0.2, LD=0.15, and LI=0.05.

The fuzzy rules of the Fuzzy Proportional Control
Element (FPCE) are generated heuristically based on
the intuitive concept that the proportional control
action at any time step is directly proportional to the
error 1e at the same time step regardless of the value

of the error at the previous time step 2e . Therefore, if

the error variable 1e is expressed linguistically as
positive small, the proportional control action can be
expressed linguistically positive small and so on. The
fuzzy rules of the Fuzzy Derivative Control Element
FDCE are generated based on the intuitive concept
that the derivative control action at any time step is
directly proportional to the rate of change of the error
(difference) between two successive time steps.
Therefore, if the error variables 1e and 2e are both
expressed linguistically as positive, the derivative
control action can be expressed linguistically as zero
and so on. The integral control action is composed of
two parts. The first part is the controller output
history ()I KT-TU , while the second part is the
incremental output of the
controller ()1 2 = ∆I I KTf (e ,e) U . The fuzzy rules
of the Fuzzy incremental Integral Control Element
(FICE) are generated based on the intuitive concept
that the incremental part of the integral control action

Layer 4
Output
Term
Nodes

Layer 5 &
Layer 6
Output
Nodes

Layer 2
Input
Term
Nodes

Layer 3
Rule nodes
(Inference)

Layer 1
Input
 Nodes

y1 yl

x1 xn

w

3

ijw

4

ijw

5

ijw

6

ijw

Z-1 Z-1

NL NS ZE PS PL
e(k), or e(k-1)

-L +L -2L +2L 0
Fig.7. Input membership functions of fuzzy

controller.

+2LP, I, or D

P, I, or D

NL NS ZE PS PL

+LP, I, or D -LP, I, or D -2LP, I, or D 0 minValue maxValue

Fig.8. Output membership functions of the fuzzy
controller.

at a time step is directly proportional to the sum of
the error variables at two successive time steps.
Therefore, if the error variables 1e and 2e are
expressed linguistically as positive and negative, the
incremental part of the integral control action can be
expressed linguistically as zero and so on. The rule
base of the three incremental FCEs (P, D, and I) can
be combined together to form one rule base for the
fuzzy-PID-like incremental servo controller output as
listed in the table below. The total servo-controller
output can be represented as:

PID NP ND 1 2 NI 1 21= (-) + (+)+U k e k e e k e e (6)

where kNP, kND, and kNI are the equivalent non-linear
gains that can be defined according to the input
condition.

e1 e2 P-element D-element I-element
NL NL NL ZE NL
NS NL NS PS NL
ZE NL ZE PL NL
PS NL PS PL NS
PL NL PL PL ZE
NL NS NL NS NL
NS NS NS ZE NL
ZE NS ZE PS NS
PS NS PS PL ZE
PL NS PL PL PS
NL ZE NL NL NL
NS ZE NS NS NS
ZE ZE ZE ZE ZE
PS ZE PS PS PS
PL ZE PL PL PL
NL PS NL NL NS
NS PS NS NL ZE
ZE PS ZE NS PS
PS PS PS ZE PL
PL PS PL PS PL
NL PL NL NL ZE
NS PL NS NL PS
ZE PL ZE NL PL
PS PL PS NS PL
PL PL PL ZE PL

Feedback-Error Learning Scheme

Kawato et al., (Kawato et al., 1988) proposed a novel
architecture for adaptive control called the Feedback
Error Learning (FEL) control technique. The novelty
of the FEL method lies in its use of feedback error as
a teaching signal for learning the inverse model. This
scheme ensures that on-line training will stop only
when the feedback error is zero. This behaviour
resembles the integration action in integral
controllers so that only the incremental part of the
integral control element is used in the proposed
feedback servo-controller. The neuro-fuzzy forward
path controller parameters are tuned on-line using the
feedback controller response as the error signal. The
network adjustable free parameters were selected to
be centres of the output membership functions of the
output term nodes in layer four as well as the link
weights at layers two and six. Fukuda et al., (1990)
proposed a variable learning method for robotic

manipulators neural network controllers called
“Fuzzy Turbo”, based on fuzzy set theory to avoid
stagnation during learning. In this method, a linear-
PID feedback controller is used with the feedforward
controller. In (Arabshahi et al., 1992), fuzzy control
of the learning rate η is suggested. The idea behind
fuzzy control of the learning rate is the
implementation of the heuristics used for faster
convergence in terms of fuzzy IF-THEN rules.
However, there is still no general guidance for the
proper selection of the learning rate and one can say
it is case-dependent. In this work, the fuzzy-PID-like
incremental feedback controller along with a fixed
learning rate provides the general non-linear policy
of the controller and learning signal as well. Weight
changes are performed at the kth iteration as,

 () i

k FB

i
FF k kw T T w wη∆ = ∗ ∂ ∂ (7)

where Ti
FF is the feedforward torque at robot link i,

Ti
FB is the feedback torque at robot link i, wk is the

vector of weight values after the kth iteration, ∆wk is
the change in these weights, and η is the learning
rate. The chain rule is then applied to calculate the
network output partial derivatives with respect to the
variable weights at each layer.

5. RESULTS

The proposed control system was tested on the first
three links of the Puma 560 robot. For comparison
purposes, a conventional-PID controller, tuned to
produce the most acceptable performance, was used
to control the robot over a sinusoidal trajectory for
each link, while the arm was carrying a fixed payload
of 7.0 kg

-1.5

-1

-0.5

0

0.5

1

1.5

0

0.
12

0.
28

0.
58

0.
98

1.
46 2

2.
4

2.
63

2.
81

2.
99

3.
15 3.
5

3.
92

4.
52

4.
91

5.
45

5.
85

Sec.

D
eg

re
es

Angle-1 Error

-1

-0.5

0

0.5

1

1.5

0

0.
11

0.
27

0.
56

0.
96

1.
44

1.
98

2.
37

2.
62

2.
79

2.
97

3.
13

3.
45

3.
87

4.
45

4.
85

5.
38

5.
81

Sec.

D
eg

re
es

Angle-2 Error

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

0

0.
12

0.
28

0.
59 1

1.
49

2.
03

2.
43

2.
64

2.
82 3

3.
21

3.
53

3.
98 4.
6

4.
96

5.
54

5.
88

Sec.

D
eg

re
es

Angle-3 Error

Fig.9. Neuro-fuzzy controller tracking errors.

-4

-3

-2

-1

0

1

2

3

0

0.
11

0.
27

0.
55

0.
94

1.
42

1.
95

2.
36 2.
6

2.
77

2.
95

3.
11

3.
43

3.
83

4.
38

4.
83

5.
29

5.
75

Sec.

D
eg

re
es

Angle-1 Error

-3

-2

-1

0

1

2

3

4

5

0

0.
11

0.
25 0.
5

0.
84 1.
3

1.
79

2.
22

2.
52

2.
72

2.
86

3.
03

3.
25

3.
54

3.
95

4.
53

4.
88

5.
39

5.
79

Sec.

De
gr

ee
s

Angle-2 Error

-6

-5

-4

-3

-2

-1

0

1

2

3

4

0

0.
11

0.
26

0.
51

0.
85

1.
32

1.
81

2.
24

2.
53

2.
73

2.
88

3.
04

3.
27

3.
57 4

4.
58

4.
93

5.
45

5.
83

Sec.

D
eg

re
es

Angle-3 Error

Fig.10. Conventional-PID controller tracking errors.

Figure (9) presents the position tracking errors for the
suggested neuro-fuzzy controller, while figure (10)
shows the tracking errors for the conventional-PID
controller.

6. CONCLUSION

A new technique for modelling and control for robot
manipulators was presented. An inductive learning
technique is employed to construct the forward path
inverse controller using input/output measurements,
in the form of a new neuro-fuzzy network. A new
fuzzy-PID-like incremental feedback controller was
incorporated in the control system. A feedback error
learning scheme was used to tune the network
weights on-line. It can be observed from the obtained
results that the proposed method gave better tracking
accuracies non achievable with the conventional-PID
controller.

ACKNOWLEDGMENTS

The research described in this paper was carried out
within the EC project IST-1999-13109 “Supporting
Rehabilitation of Disabled Using Industrial Robots
for Upper Limb Motion Therapy”. The other partners
in the project are: Budapest University of
Technology and Economics, Hungary; National
Institute for Medical Rehabilitation, Hungary;
University of Rousse, Bulgaria and Zebris
Medizintechnik GmbH, Germany.

The authors are grateful for support from the EC FP6
Innovative Production Machines and Systems
(*IPROMS) Network of Excellence. Thanks are also
due to colleagues in the Manufacturing Engineering
Centre, Cardiff University, for their help.

REFRENCES

Arabshahi P., Choi J.J., Marks R.J., and Caudell T.P.
(1992), Fuzzy Control of Back propagation, IEEE
International Conference on Fuzzy Systems, San
Diego, USA, Pages 967-972.

Armstrong B. and Corke P.I. (1994), A Search for
Consensus Among Model Parameters Reported
for the PUMA 560 Robot, IEEE International
Conference on Robotics and Automation, San
Diego, USA, Volume 2, Pages 1608-1613.

Bigot S. (2003), New Techniques for Continuous
Values Handling in Inductive Learning, Ph.D.
Thesis, University of Wales, UK.

Craig J.J. (1996), Introduction to Robotics: Mechanics
and Control, Addison-Wesley Publishing
Company.

Er M.J., Yap S.M., Yeaw C.W., and Luo F.L. (1997),
A Review of Neural-Fuzzy Controllers for
Robotic Manipulators, Thirty-Second IAS Annual
Meeting, IEEE Industry Applications Conference,
Los Anglos, USA, Volume 2, Pages 812-819.

Fukuda T., Shibata T., Tokita M., and Mitsuoka T.
(1990), Adaptation and Learning for Robotic
Manipulator by Neural Network, Proceedings of
The Twenty Ninth IEEE International
Conference on Decision and Control, Honolulu,
USA, Volume 6, Pages 3283-3288.

Kawato M., Uno Y., Isobe M., and Suzuki R. (1988),
Hierarchical Neural Network Model for
Voluntary Movement with Application to
Robotics, IEEE Control Systems
Magazine, Volume 8, Issue 2, Pages 8-15.

Lin C.-T. and Lee C.S.G. (1991), Neural Network-
Based Fuzzy Logic Control and Decision
System, IEEE Transactions on Computers,
Volume 40, Issue 12, Pages 1320-1336.

Shankir Y. (2001), Fuzzy Logic Systems and Fuzzy
Neural Networks for Dynamic Systems
Modelling and Control, Ph.D. Thesis, University
of Wales, Cardiff School of Engineering, Cardiff
University, UK.

Wang L.X. and Mendel J.M. (1992), Generating
Fuzzy Rules by Learning from Examples, IEEE
Transactions on Systems, Manufacturing, and
Cybernetics, Volume 22, Issue 6, Pages 1414-
1427.

