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Abstract: A novel two-thermocouple sensor charé&agion method for use in
variable velocity flow environments is described. difference equation method,
recently developed by the authors for constant cigloflow applications, is
extended to accommodate variable velocity flowsngispolynomial parameter
fitting on a sliding data window. In particulary bising a novel difference equation
formulation the invariance of time-constant ratidhwespect to flow velocity is
exploited to produce an efficient unbiased and isbeist time-constant estimator.
Monte-Carlo simulation studies show that the nevgoathm outperforms
alternatives in the literature without the resiviet requirement ofa priori
knowledge of thermocouple time constant ratiGepyright © 2005 IFAC
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1. INTRODUCTION response, poses major problems when measuring

high frequency temperature fluctuations. From

Dynamic measurement of exhaust gas temperaturthermodynamic considerations it can be shown that

(EGT) gives valuable insights into car engine the bandwidth of a thermocougig,) is dependent

performance, particularly  during  transient gp, its diameter according to the equation

operation. As manufacturers strive to design more

fuel efficient, low emission cars EGT is likely to —_  qm-2,,m

. . . ) Wy =kd™ v D

become a desirable input in next generation

electronic engine management systems (EEMS)

(Kee,et al, 1999). However, performing accurate, wherex andm are constantsj is the diameter of

reliable and cost-effective measurement of rapidlythe thermocouple wire and is the velocity of the

changing gas temperature is a challenging problemgas. Thus, we require large diameters for the harsh
environments presented by engine exhausts, but

Fast response temperature measurement can lsmnall diameters to follow the rapid temperature

performed using sensors based on techniques sudhictuations. One solution to this problem is to

as Coherent Anti-Stokes Spectroscopy (CARS),employ robust large diameter thermocouples and

Laser-Induced  Fluorescence, and Infraredthen utilise software techniques to reconstruct the

Pyrometry, but these are expensive, difficult totrue temperature from the attenuated and phase

calibrate and maintain and therefore not practicalshifted measurements. Before such reconstruction

for wide scale deployment. The use of acan take place, however, a model of the

thermocouple as an instrument for temperaturehermocouple must be determined, a process

measurement is common because of its simplicityreferred to as sensor characterisation.

robustness, relatively low cost, ease of manufactur

and installation. Unfortunately, their design, aIf certain criteria regarding the mechanical

compromise between robustness and speed dafonstruction and placement of thermocouples are



met (Forney and Fralick, 1994) they can betolerance compared to existing sliding window
adequately modelled as having first order dynamicamethods.
with time constant and unity gain.
The remainder of the paper is organised as follows.
T() =T (t)+7T, (t). ) Difference equation based sensor characterisation
‘ formulations and associated unbiased parameter
i ) estimation algorithms are described in Section 2.
HereT (t) is the true gas temperature andt) IS The new sliding window formulation incorporating
the measured temperature. polynomial parameter fitting is then introduced in
Section 3. Simulation results demonstrating the
In theory, using this mOdeng (t) can be operation and performance of the new algorithm are
iven in Section 4 and finally Section 5 provides

reconstructed from the measured temperature angome conclusions.

its derivative. In practice this approach is irsibte
as measurements are generally corrupted by noise,

making Tm(t) difficult to compute accurately. 2. DIFFERENCE EQUATION SENSOR
Furthermore,r , a function of the bandwidth CHARACTERISATION
w, (7 =2mv;"), varies with gas flow velocity (1)
and is generally unknowe priori. ) )
2.1 Difference Equation Thermocouple model

Thus, a single thermocouple provides insufficient ) i ) )
information to determine sensor characteristics 1h€ €quivalent discrete _tlme representation for the
situ. Data fusion can be used to help with sensoftl€rmocouple model (2) is:

characterisation and it is quite common to use two

thermocouples for this purpose.  There are T.(k) =aT, (k=1) +bT (k-1), 3)
numerous publications on the problem of time

constant estimation and subsequent temperatur@here a and b are difference equation ARX
reconstruction on the basis of measurements takeparameters an#t is the sample instant. Assuming
from two or more thermocouples with different zoHs and a sampling interval, the parameters of
time-constants. (e.g. Keet al, 1999; Tagawa and >
Ohta, 1997; Forney and Fralick, 1994). These two
thermocouple probe (TTP) methods rely on the
restrictive assumption that the ratio of the
thermocouple time constanter ( a<1 by
definition) is knowna priori. They are also subject
to singularities and sensitive to noise.

the discrete and continuous time thermocouple
models are related by

a=exp(-r,/r), b=1-a. (4)

2.2 Three-parameter ARX model (Gamma model)
Hung, et al. (2003 and 2004) developed difference _
equation methods for TTP characterisation that doThe discrete parametera and b cannot be
not require anya priori assumptions about the time identified using (3) alone becau$g is unknown.

constant ratios. However, to date the methods havey,wever, using two thermocouples that are subject
mainly focused on single-valued time constanty, the same environmental conditions (i.e. the same

estimation, where the gas flow velocity is kept :
. ’ o as temperaturg_ and gas velocity), T, can be
relatively constant.  Unfortunately, this is not g P % g W) T,

always applicable in practical situations such aseliminated to produce the following 3-parameter
engine exhausts where gas velocity variesARX representation:

continuously.

Tmz(k) = lemz(k _1) + szml(k) 5
To tackle the issue of sensor characterisationunde +y, T, (k=1) ()
varying gas flow conditions, this paper proposes a
novel difference equatioralgorithm that exploits

the invariance of time constant ratio with resgect where

gas flow velocity (Hunget al, 2004). This reduces 1- a-a,)

the problem to one where only a single time- ylzaz,yzziaz,ysz—ﬁ. (6)
varying parameter needs to be tracked and allows 1-a 1-a

efficient sliding data window and polynomial

parameter fitting techniques to be used to obtainHere subscripts 1 and 2 are used to distinguish
unbiased time-constant estimates. The proposetietween signals from different thermocouples. The
algorithm gives improved performance in terms of 3 gamma parameters are introduced to convert the
time constant estimation accuracy and noisenon-linear 2-parameteraf,a,) model into a linear-



in-the-parameter ARX formulation (Fig. 1) that can signals, the noise terms in th& and Y data
be solved using linear least-squares techniques.  blocks are no longer independent with the result
that conventional least-squares and TLS both

+y.zt generate biased parameter estimates even when the
Ta(K) —p % ——T.,(k) measurement noise on the thermocouples is
1-yz independent. Generalised total least squares

(GTLS) on the other hand, which employs

Fig. 1. Equivéent ARX model for TTP sens  generalised singular value decomposition (GSVD),
characterisation. can produce unbiased parameter estimates under

these conditions provided the noise covariance

Analysis of thegammamodel formulation shows matrix, C of the augmented data matfix Y] is

that conventional least-squares identification gead KnOWn to within ‘an arbitrary scalar, that is
to biased parameter estimates because noise i =HC,. 4 an arbitrary scalar (Van Huffel and
present on both the model input and output signalsVandewalle, 1991).

Hung, et al. (2003) showed that unbiased parameter

estimates can be achieved using total least squaré$ung, et al. (2004) showed that for the 2-parameter
(TLS), provided the variance of the noise on bothBeta model (9)C, can be expressed as
thermocouple measurements is the same. However,

Monte-Carlo simulation studies showed that TLS

was only effective for low noise levels as the 20 -9 0
variance of the estimates grew rapidly with noise Co@=|-9¢ @+1 1|, >0 (10)
level. This is partly a feature of TLS, which is 0 1 2

known to yield higher variances than conventional
least squares (Van Huffel and Vandewalle, 1991), . . .
and partly due to the extra degree of freedomhere ¢ is the ratio of the thermocouple noise
introduced by having a 3-parameter model for avariances which is typically unity.

system with only two unknowns.
Given C, , the GTLS parameter estimates are
obtained by computing the GSVD of the matrix
2.2 Two-parameter ARX model (Beta model) pair [X Y] andW , whereW is the Cholesky

The 3-parameter model can be reduced to a "neacriecomposnmn oG, :

two-parameter formulation by defining a new
parameterAb, /b and expressing (5) in terms of gsvd[X Y], W) - (Z;5,G) (11)

andb, only. This gives
A b, Y g and evaluating

ATnln(z = mTrrl?l + bZATrrl?l_;' (7) AT T 1
[9 ; ‘1] =-—100,- (12)

where ATX , ATX Jas

m2 '’

and ATX? are composite

variables defined as Here x_ is the (3x1) vector of generalised
singular values,G is the (3x3) matrix of

ATX = K)-T (k=1
m = T () = Tra (K =1) corresponding singular vectorgy, is the third

AT, =T, (k) -T,(k-1) - (8)

o column of G and g, is the third element of, .
AT, =Ta(k=1) =T (k=1

For anM-sample data set (7) can be expressed in 3. SLIDING WINDOW CHARACTERISATION
vector-matrix form as

The sensor characterisation methods described in

Y = X6, 9) the previous section are intended for situations
_ where thermocouple time constants are relatively
with Y = AT\, X =[AT AT,;1,and@ =[Bb,]".  constant over the interval of interest. They can,

HereATX , AT* and AT*! are vectors containing however, be easily extended to variable time-
ML Wﬁn | m fth m2 respondin mpositeCONStant scenarios by introducing a sliding data
i sa [k)es E’ € correspo 9 COMPOSIE, indow. Then, provided the time constants are
signalsAT | , AT,

k-1
mz s @NAAT changing sufficiently slowly to be almost constant
over the length of the data windpaccurate time
Due to the form of the composite input and outputconstant estimates can be obtained.



The choice of data window length)(is a critical ~ Given g and b,(k) , the most reliable sliding

parameter in the performance of these methodsyingow time-constant estimates can be obtained by

Since the variance of least-squares parametegyajuatingh, (k) at the centre of the sliding data

estimates and the bandwidth of the estimator (with . . _ . .
respect to time-constant variation frequency) areVindow, i.e. atk=N2. Alteratively if the

both inversely proportional toN it follows that res.ultingNIZ sample delay cannot be tolerated the

choosingN becomes a trade-off between robustnes<EStimates can be computed fo= N.

to measurement noise and tracking performance. In | . .

practice, the sensitivity of sensor characterisatio M0difying the matrix-vector representation (9) to

methods to noise severely limits the bandwidth thatncorporateb, (k) gives

can be achieved.

. - . . . Yp = xpap’ (16)

In the next section a sliding window algorithm is

presented that extends the bandwidth that can be

achieved by relaxing the requirement that timeWhere

constants are invariant over the data window. ) 1 L 2k S et
X, =[ATy AT o KAT G KEAT G5 KPAT LS

Y =ATE, 6. =[Bb,b,b,b.] 17
3.1 Beta model with polynomial parameter fitting P mer Op =18 bz by By, bl (47

Recalling that thes parameter in (7) is defined as With the products!AT > defined as
BAb,/b, and using the relationships in (4) it can _ _ _
be shown that KIAT 5 =[AT 5, 22AT 5, -+ (N 1) AT LT
(18)
— l—eXp(Ts/Tz) ~ i =a< 1 (13)

1-exp(. /1) T, In order to apply generalised total least squares

(GTLS) to obtain unbiased parameter estimates
with this extended model the corresponding noise

Provided 7, <<7,. The significance of this covariance matrix must be computed as follows.

relationship is that sincey is known to be

invariant with respect to gas flow velocity (Kest,

al., 1999), it follows thatg is also approximately 3.2 Computing the noise covariance matrix
invariant and can therefore be assumed to be

constant over large data windows even if the timeDue to the introduction of thp, (k) polynomial the
constants are not. noise covariance matrix of the augmented data
. _ matrix [ X Y] contains terms of the form

In light of this property of theg model (7), the
following generalisation is proposed as a means of E[ki7*n¥]
relaxing the constraint on time constant invariance allb
over the sliding data window:

(19)

where nf,.nf 0{n*,.nk,.n<L} are the random

AT, = BATS +b,(K)AT,, (14)  noise components of the composite signals defined
in (8). If the noise components on the thermocouple
with measurements} (k) andT_,(k), are assumed to
B ) 3 be zero mean, white noise sequences with variances
b, (k) = byo + Kby, + K7y, + Kby (15) v, and v, respectively, thenp‘p¢ will be

where by, is the polynomial coefficient of thih independent of the deterministic sigrdl, hence

power term. Elk'nins]=E[K'1.E[nin:] - (20)

Here the constanb, is replaced by a 3rd order
polynomial, b,(k) to capture the parameter

variation within the data window. A low order

polynomial is chosen in preference to other KK

function approximators such as neural networks as Elm.m,1/v, 0{2¢,9+12} (21)
it provides a reasonable compromise between

algorithm complexity and approximation accuracy. whereg =v, /v, and is typically unity.

Taking into account the correlations between the
composite noise signals it can be shown that



E[k'] can be computed over tiesample sliding
window as

. 18, 1w N+1) .
E[k']l=—=> k'l ==> K S(j,k T
[k'] NkZ:;‘ NZ (k+1} (1,k)  (22)

k=1 T, (1)

where S is the Stirling number of the second kind

k-1 . k .
S(j,k)=|32(—1)'(_](k—i)l- 23
*i=0 : Fig. 2. Block diagram of the simulated two-
thermocouple measurement system.
Using these expressions the noise covarianc
matrix can be computed as
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where %a o‘.e o.‘s ‘1 1‘.2 1.‘4 l‘,ﬁ 1‘,8
time (s)
D,=4N,D, =4N(2N +1), D, =%(N)N?, Fig. 3. Beta PF and Beta C sliding window t
D, =% N(ZN +1)(3|\|2 +3N _1), constant estimates for noifee data wit
ol sinusoidal flow velocity fluctuations.
D, = 4 (N)N2(2N? + 2N - 1), (25)
Dy =4 N(2N +1)(3N4 +6N°®-3N +1), window size of 100 samples (0.2 seconds). Also
p=p+1 and N=N+1. included, for comparison purposes, are resultafor

constant paramete8 model algorithm (Beta C).

Note that while the velocity profile was chosen to
4. SIMULATION RESULTS be sinusoidal, the time constant profiles are not
because of the non-linear relationship between gas

A MATLAB® simulation of a two-thermocouple flow velocity and time constant value (1).

probe system (Fig. 2) was used to evaluate the

performance of the proposed sliding window sensorThe results clearly show the superiority of theaBet

characterisation algorithm. The thermocouples werd®F approach, which gives consistently good time
modelled according t¢1) and (2) withxk andm constant estimates over the complete profile while
set to 4.910° and 0.415, respectively. Wire the Beta C algorithm performs very poorly

diametersd, and d, were chosen to be 12m  throughout.

and 25um so as to yield time constants (Fig. 3) of
the order of 2.5 and 7 milliseconds, respectively.
The simulated gas temperature and velocity wer
varied sinusoidally according to the equations:

The advantage of using polynomial rather than
constant parameter fitting is further highlighted i
eFig. 4. This shows the variation bf over a typical

data window together with thp, (k) polynomial

T,(t) =75+ 45sin(63) (26) and constant parameter estimates of this variation.
v(t) =30+ 25sin(L2.51) A series of 100 run Monte Carlo simulations were
) also performed to evaluate the performance of Beta
and the resuling temperature measurement$ iy the presence of additive white measurement

sampled every 2 milliseconds. noise. The percentage noise lew¢l, defined as

Fig. 3 shows the performance of the propoged
19 Wi p propoge var(fyj)

model polynomial parameter fitting sliding window K =100 ——% (27)
algorithm (Beta PF) for noise free data and a var(y,)



is used to quantify the amount of noise introduced Table 1 Mean and (standard deviation) of the
Here n, is the measurement noise added tojthe  percentage estimation errors obtained with various
sliding window sensor characterisation algorithms

thermocouple signal.

0,
Methods ) 1 Ké/") 3 8
o i b2 using | ! TR (@) 257 280 354 640 18.62
| |PolynoR fiting ‘ (0.00) (0.53) (1.11) (2.42) (6.30)
e I G e CTC IR 19.52 20.12 2170 27.72 46.31
- AT s eor | BetaC(CTLS) 900y (1.34) (2.86) (7.44) (27.18)
03 == — - 2 S i 173 123 008 345 9.30

Beta PF (GTLS) (0.00) (1.74) (3.57) (7.47) (13.38)

|

| |

| |
s 175 254 466 10.05 16.90

D025 - - - - - — - — - R e H
; Beta PF(LS)  5'00) (1.79) (3.80) (8.00) (13.17)
*Values in brackets are the mean percentage stawlgaiations

02 - — — — - — -—— =/ -— - = )2 - Beta PF
| constant b2(k) — b2 -BetaC
| assumed == b2 - Beta true

015 ——————————— — —

i | samplinglinstant ||
! ™—— where estimated
: ! b2 \srelu‘h\ed

5. CONCLUSIONS

|

1
548 5 i) 5 56 A novel sliding window difference equation based
wo-thermocouple sensor characterisation algorithm
as been presented for variable velocity flow
applications. By adopting a formulation that can

h | h K exploit the time-constant ratio invariance property
The GTLS based Beta PF results are benchmarkegs o0y systems an efficient, unbiased polynomial

ggainst a cqnventiqnal least squares (LS) Beta I:)'p:)arameter fitting method is developed to track time
implementation to illustrate the effect of bias. In . nstant variation within the sliding  window.
addition results are presented for the constangimjation results confirm the superiority of the

parameter Beta algorithm (Beta C) and apey gigorithm over alternatives that assume fixed
benchmark time domain reconstruction (TDR) time constants over the sliding window.

technique that relies oa priori knowledge of the

time constant ratiog . For details of the latter,

refer to Kee,et al. (1999). In each case a sliding 6. ACKNOWLEDGEMENTS
window of 100 samples is used.

Fig. 4. Performance comparison of the Beta PF an
Beta C models for a typical sliding window.
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