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Abstract: Most applications of MSPC have tended to focus upon the manufacture of a 
single product with separate models being developed to monitor individual recipes. With 
process manufacturing trends being influenced by customer demands there has been an 
increase in the manufacture of a wide variety of products, there is a real need for process 
models which allow a range of products, grades or recipes to be monitored using a single 
process model. With increasing attention now being paid to the FDA Process Analytical 
Technologies (PAT) initiative, the use of spectro-chemical information for enhanced 
monitoring of reactions and is now gaining impetus. An application of the performance 
monitoring of a multi-recipe multi-reactor industrial batch polymer manufacturing is 
discussed in which NIR spectroscopic data is also integrated with process data to provide 
enhanced batch monitoring. Copyright © 2004 IFAC 
 
Keywords: Multivariate Statistical Process Control; Spectroscopic Data; Multi-recipe, 
Batch Reactors 

 
 

 
 

1. INTRODUCTION 

An area of rapidly growing interest for the 
monitoring of processes is that of Multivariate 
Statistical process Control (MSPC). MSPC schemes 
are typically based on the statistical projection 
techniques of Principal Component Analysis (PCA) 
and Projection to Latent Structures (PLS) and their 
multi-way extensions for batch processes.  Reported 
practical applications of MSPC have focused on the 
production of a single manufactured product i.e. one 
grade, one recipe, etc. with separate models being 
used to monitor different types of products (e.g. 
Nomikos & MacGregor, 1994; Kosanovich & 
Piovoso, 1995; Kourti et al, 1995; Martin et al, 1999, 
2002; Weighell et al, 2001; Wise & Gallacher, 
(1996).  
 
Most applications of MSPC, or better termed 
Multivariate Process Performance Monitoring 
(MPPM), have focused upon the production of a 
single manufactured product i.e. one grade, one 
recipe, etc. with separate models being used to 
monitor different types of product. With process 
manufacturing increasingly being driven by market 

forces and customer needs and perceptions, the 
necessity for flexible and responsive manufacturing 
is becoming essential.  This is particularly the case in 
the manufacture of specialty products where new 
product formulations require to be introduced to the 
market over a short time scale to ensure competitive 
advantage and product diversification, as well as, for 
example , in pharmaceutical manufacturing where 
new strains are routinely introduced. Thus there is a 
real need for process monitoring models which allow 
a range of products, grades or recipes to be 
monitored using a single process representation. Such 
process representations will  enable the performance 
monitoring of a number of different product types 
using a single process representation. 

 

2. THE MULTI-GROUP ALGORITHM 

The elimination of between group variation is a 
prerequisite for statistical process monitoring, so that 
interest can focus on within process (product) 
variability.  This normally requires constructing 
separate control charts for each type of product or 
grade to be monitored. In many process monitoring 



 

     

situations this may be impractical because of the 
large number of control charts required to monitor all 
the products being manufactured and the limited 
amount of data available from which to develop a 
process representation. An extension to PCA allows 
the construction of multi-group pooled covariance 
matrix models has been proposed (Lane et al, 2001) 
which is based on comb ining the variance-covariance 
matrices of each of the individual groups 
(Krzanowski, 1984; Flury, 1987). The loadings for 
the latent variables are then calculated from the 
pooled variance-covariance matrix of the individual 
groups.   The method is based on the assumption that 
a common eigenvector subspace exists for the 
individual variance-covariance matrix of the 
individual product grades. The pooled sample 
variance-covariance matrix (S) which forms the basis 
of the generic model approach is defined as a 
weighted sum of the g individual variance-covariance 
matrices gsss ,,, 21 K :- 
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for gi ,,1 K= , where N  is the total number of 
observations, g  is the number of groups and ni is the 
number of observations within group i .  Through 
the pooled sample variance-covariance matrix of the 
individual product grades, the principal component 
loadings are calculated. More recently a multi-group 
PLS approach have been proposed (Lane, Martin and 
Morris, 2003; Martin and Morris, 2003). These novel 
developments allow the monitoring of several 
different sets of operating conditions by a single 
model.  The potential of these developments which 
allow, with some restrictions, the monitoring of 
different recipes, different unit operations and with 
different number of measured variables sets of 
operation his development are far-reaching and 
provide a major step forward in ensuring the wide 
application of multivariate process performance 
monitoring in process manufacturing.   

 
 

3. MULTI RECIPE BATCH MANUFACTURING 
 
An application to an industrial semi-batch polymer 
manufacturing process is discussed. Process data is 
available every five minutes and comprises 
temperature corrected viscosity, reactor temperature, 
vapour temperature, pressure / vacuum, distillation 
column temperatures, and NIR spectral data 
throughout the batch.  Four different recipes were 
considered which were run in five different reactors.  
In order to overcome this combination of multiple 
recipes and different reaction vessels, common 
subspace models were developed. The 
polymerisation reaction is monitored through 
observation of the polymer end groups.  Although 
chain length of a polymer cannot be measured 
directly during the reaction, the value of end groups 
can be used to infer the progress of the reaction.  The 

end group measure acts as a quality variable to 
monitor batch progress and are often determined 
using an off-line wet chemical analysis. 
 
Figure 1 shows the PCA plot of the five different 
reactors used in the polymer production whilst Figure 
2 shows the PCA plot of the four different recipes 
processed.  Clearly the between ‘group’ (between 
cluster) variability observed in the plots prevents the 
detection and diagnosis of any subtle variations 
(within cluster) variability and process malfunctions 
which might take place during the batch run.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Bivariate Scores plot for five different 

reactors (PC1 versus PC2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Bivariate Scores plot of for four different 

recipes (PC1 versus PC2) 
 
An example of the impact of this ‘between group’ 
variability is shown in Figure 3 which plots the 
through batch scores for a combined model for two 
recipes.  The separation of the two recipes into 
separate regions is clearly observed.  Also notable are 
the varying batch completion times.  This results in a 
monitoring model that exhibits severe ‘between 
recipe’ variability and which lacks sensitivity to 
detect and enable the diagnosis of subtle process 
malfunctions.  In contrast Figure 4 shows a similar 
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plot for a single recipe model where the random 
scatter of the scores plots through the batch run can 
be observed and which is suitable for ‘within group’ 
batch monitoring. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Scores Plot for PC1 for two recipes 
(Recipe 1 – Black; Recipe 2 – Purple) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Scores Plot for a single recipe model PC1 

(upper plot) and PC2 (lower plot) 
 
Figure 5 shows schematically the off-line laboratory 
monitoring of the progress of the polymerisation 
reaction where the quality of the batch is assessed by 
considering the hydroxyl number (OH#) and acid 
value (COOH#) of the reactor contents.  Accurate 
knowledge of these values is  required to fix the point 

at which the batch meets the desired reaction curve.  
The relationship between the hydroxyl number and 
viscosity is controlled to follow the path of the 
reaction curve, with upper and lower limits used to 
account for allowed process variability.  When the 
trajectory enters a pre-defined end zone the batch is 
terminated.   
 
Data from thirty two ‘acceptable’ batches which 
operationally appeared to exhibit nominal operations 
were available and included measurements of seven 
process variables - Temperature Corrected Viscosity; 
Reactor Temperature, Reactor Vapour Temperature, 
Bottom Column Temperature, Middle Column 
Temperature; Top Column  Temperature, and Reactor 
Pressure / Vacuum.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Reaction Monitoring – OH# versus 

Viscosity 
 
In order to assess the ability of the multi-group 
pooled covariance modelling to detect subtle process 
events, a monitoring model was initially built by 
simply combining the different recipes resulting in a 
monitoring model typical of that shown in Figure 3.  
One particula r batch exhibited non-nominal operation 
due to increase in the bottom column temperature, 
from the start of the batch. This increase in column 
bottom temperature rose through the column and 
towards the end of the batch non-nominal operation 
was experienced in the temperature at the top of the 
column. This batch was projected onto the combined 
monitoring model.  Figure 6 shows the through-batch 
plot of the first and second principal component 
scores respectively. It can be observed that there is 
no substantial out-of-statistical control signal 
indicating a potential processing problem on which 
the operational staff could act although the PC2 sores 
plot does show some deviation from what might be 
expected at the beginning of the batch.  
 
With a pooled covariance multi-group model the 
sensitivity of the model to more subtle process faults 
becomes apparent as shown by the random scatter of 
the scores in Figure 7.  The performance of the multi 
group monitoring model, Figure 8, where it can be 
seen that the PC1 score plot picks up an out-of-
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control signal due to the column temperature problem  
at around 26 mins whilst in PC2 it is picked up at 
around 40 mins.  This study comparing the combined 
recipe modelling approach with the multi-group 
model approach demonstrates a major issue with 
conventional MSPC monitoring approaches that 
simply combining different recipes or product grades 
can lead to poor monitoring performance with a loss 
of model sensitivity. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 6: Scores Plot against time for PC1 (upper 

plot) and PC2 (lower plot) - Abnormal Batch 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 7: Scores Plot for PC1 Multi-Group Model  

(Recipe 1 – Black; Recipe 2 - Blue) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Multi-group Model Monitoring plot PC1  

(upper plot) and PC2 (lower plot) 
 

5.  SPECTRAL AND PROCESS DATA 

Most recently, and in particular driven by the FDA 
initiative in Process Analytical Technologies (PAT) 
in the bio-processing sector, the use of spectro-
chemical information, such as NIR, for the on-line 
real-time monitoring of processes is receiving 
increasing attention, especially from the 
pharmaceutical and food manufacturing industries. 
Thus the integration of spectroscopic data with 
process data for enhanced process performance 
monitoring becomes attractive.  There are a number 
of approaches to handing spectroscopic data such as 
multiplicative scatter correction, standard normal 
variate transformation, orthogonal signal correction, 
second derivative and wavelet transformation which 
have been investigated.  
 
PCA applied to the raw un-scaled spectral data was 
used to identify the more significant wavelengths 
prior to applying a wavelet transformation using a 
Symmlet #8 mother wavelet.  Figure 9 (upper plot) 
shows the wavelengths of bond frequencies identified 
by the process chemists which are characteristic of 
the chemistry that dominate the end quality aspects 
of the polymerisation reaction whilst the lower plot 
shows the wavelet transformation. 
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Figure 9: PCA of raw un-scaled NIR spectra (upper 

plot); Wavelet detail coefficients (lower plot) 
 
The approximation and detail coefficients were 
investigated at each level, with the most suitable 
group of coefficients being identified as the detail 
coefficients at level 5 where each detail coefficient 
summarised information for approximately 22 
wavelengths which is around the size of the broad 
band of each bond frequency. The two areas of 
interest in the NIR data sets lie around the 1450nm 
and 1900nm wavelengths.  To capture all of the 
information from the transformed spectra, the two 
detail coefficients from either side of these important 
wavelengths were also extracted for inclusion in the 
model.  This leads to the addition of four extra 
variables to the monitoring model. As each detail 
coefficient summarises information from a broad 
band of wavelengths, this approach is not as sensitive 
to chemical shifts as other transformation techniques 
such as the second derivative technique.   
 
A batch which exhibited an extended duration due to 
mid batch corrections and which was monitored 
using only the measured process variables is shown 
in Figure 10.  No out-of-control signal was given 
with no indication that the batch was anything but 
normal. The batch profiles were then re-examined 
with the inclusion of a set of variables from the 
wavelet transformed NIR data. The batch was known 
to have a longer than average duration.  
 
 

Comparison of the PC1 scores monitoring chart in 
Figure 2 with the PC1mo nitoring chart shown in 
Figure 10, reveals that the enhanced model has 
detected the occurrence of a process malfunction 
between observations thirty-four to thirty-six.  The 
Scores and SPE contribution plots are illustrated in 
Figure 12 showing the variables that are contributing 
to the out-of-control event at observation number 
thirty-four.  These reveal that variable numbers seven 
and nine lie outside their 99% confidence limits.  
These variables represent the wavelet detail 
coefficients of the OH and COOH bond frequencies.  
It is also noted that the process variables (one to six) 
lie well inside their respective confidence limits. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Scores Monitoring plots of process data 

only PC1 (upper plot) PC2 (lower plot) 
 
The multiple group process monitoring techniques 
were also demonstrated to have good fault detection 
and diagnostic capabilities.  It has been demonstrated 
that the application of a multi-group performance 
monitoring provides sensitivity to subtle process 
malfunctions not provided by the standard MSPC 
approaches.  The potential for enhanced fault 
detection and diagnosis  capabilities of the multi 
group model with spectroscopic information, in this 
case using wavelet decomposition of NIR spectra, 
has also been demonstrated.   
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Figure11: Through-batch Scores Monitoring Charts 

PC1 (upper plot) and PC5 (lower plot) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: Scores (upper plot) and SPE (lower plot) 

contribution plots for PC1 observation number 
34 

 
 

5. CONCLUSIONS 
 
The application presented in the paper is from a 
manufacturing process where the amount of data 
from each distinct set of unit processes and product 
recipes were different and limited. By applying the 

multi-group pooled correlation approach, all the 
products being manufactured could be monitored 
using a small number of monitoring charts. In this 
way the cost and time required to update the models 
can be significantly reduced.  
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