SELF-X: THE CONTROL WITHIN

R. Sanz, I. Lopez, J. Bermejo, R. Chinchilla and R.P. Conde

Autonomous Systems Laboratory
Universidad Politécnica de Madrid, Spain
ricardo.sanz@upm. es

Abstract: Trends in complex, software-intensive control systems show a continuous
process of incorporating mechanisms of self-representation and reflection. One of
the main reasons is to improve system performance and resilience in changing
uncertain environments. These approaches employ runtime models of the system
itself that, to some extent, are identifiable with other modelling strategies at the
system design and construction phases. Systems reflect upon themselves by means
of self-models. From partial plant representations like those employed in classic
model-based adaptive controllers to more encompassing plant+controller mixed
models, the internal model principle is pushing software-intensive control systems
designs to a scale that would match the complexity of modern models of human

self-awareness and consciousness. Copyright

2005 IFAC.

Keywords: Autonomous systems, software intensive controllers, reflection,

machine consciousness, autopoiesis.

1. INTRODUCTION

We all know that computer-based control systems
are being applied in a myriad of heterogeneous
engineering domains (automobiles, process con-
trol, avionics, robotics, etc..) that are —in some
sense— the infrastructure of our social lives.

Embedded control systems truly constitute the
mental substrate of our technified environment.
Our daily lives are almost completely dependent
of computing systems properly performing their
work; i.e. being suitable minds for the machines
that support many of our activities: talking, cook-
ing, moving, producing, etc. More than having
ambient intelligence (EUSAI 2004), intelligence is
becoming our very ambient.

Embedded control systems is a truly interdisci-
plinary discipline where automatic control, com-
puter science and electronics meet to solve the
complex problems of the domain. But the sci-

ence and technology of computer-based control
is facing an enormous challenge when increased
levels of autonomy and resilience are required
from the machines supporting our technified am-
bient. The construction of complex embedded
systems is a major challenge because the stan-
dard, mainstream software-intensive system con-
struction techniques are, in many cases, not good
enough to deal with such a complex task. Building
autonomous embedded systems is a major under-
taking for control software engineers.

We can say, without doubt, that control systems
complexity is boosting (Astrém et al. 2000) and,
in some sense, software intensive controllers are
becoming too complex to be built by traditional
software engineering methods (Douglass 1999).

The envisioned path to the solution of this in-
creasing complexity problem is adaptation. Adap-
tation can be seen from different perspectives,

R
A~

Data Storage

AT e SN SRR

Enterprise Network BUSLAESS

Process
Cowntrol

control Network

Process Operation

Process

' N
o
al
2

L I ——
&) A Field configuration
Freldbus

Fig. 1. Having a single, plant-wide integrated control is a major objective of control systems technology

and embedded CORBA helps in this task.

but in a rough approximation we can diferentiate
between adaptation during implementation and
runtime adaptation. A paradigmatical example of
the first type is reusable component retargetting
to adapt it to a particular execution platform.
A paradigmatical example of the second type is
fault-tolerant control.

In this paper we will consider some of the aspects
of this complexification process to discover that
the various technologies already used in this field
somewhat converge into a common perspective
that may be described as adaptive, model-based,
reflective complex controllers (Sanz 2004). We will
also discover that this vision is also consilient with
today’s ideas in the field of machine consciousness
(Holland 2003).

This paper is divided into five parts. After this
introduction the paper summarily analyses the in-
crease of control system complexity; the following
section deals with some of the techniques used to
simplify complex systems construction or increase
its resilience; the final section enters into the very
core of this paper: the generalised convergence
into controllers that exploit self models. A final
section with some conclusions closes the paper.

2. COMPLEXITY RAISING

Control software complexity is increasing due
to many factors of different origin: newly re-
quired functionalities, fault tolerance for depend-
ability, operation over heterogeneous platforms,
augmented intelligence, openness and distribu-
tion, etc.. These factors have had many effects on

control systems but we will focus here in just two:
the increase in size and the decrease in depend-
ability.

2.1 Dealing with size and complexity

The very first effect of these factors is that embed-
ded software shows a steady increase in code size
and design complexity. Embedded control system
size is increasing as a result of the convergence of
increases of initial systems size, the construction
by composition and the code contributed during
the evolution of the system.

At the end, the actual size of a real software inten-
sive controller (a distributed control system in a
refinery or a flight control system in an airplane)
cannot be easily determined. System hierarchies,
embedded components, integrated legacy systems,
redundancies —intentional or not— make the prob-
lem of system size estimation, engineering and
even understanding a challenging task.

From the maintenance point of view this leads
to unmaintainable systems when newly induced
errors overpass solved bugs. In most of these
situations architecture recovery is impossible and
hence system refactoring cannot be performed.

From the point of view of system design and
construction the size problem leads to excessive
costs and time-to-market of new products.

The main approach taken so far to address this
complexity in construction problem come from
the reuse-centric community. Many techniques,
like component-based implementation (Szypersky

1998), reusable generic frameworks (Blum et al.
2003) or aspect oriented programming (Lieber-
herr et al. 2001) tried to exploit existing partial
system designs and implementations to easy this
construction process. Reuse by adaptation is a
promising technology that has the potential of
solving many of the problems of systems construc-
tion.

DemJava
*.cool

5
Weaver

*ridl

gyrga

Fig. 2. Example of a aspect-based software adap-
tation process using the Demeter/Java aspect
weaver.

But, besides the many advances, the reuse prob-
lem is still open and much work is still necessary to
make of reusability the usual and almost universal
method of software system construction (as it is
in the case of hardware). Many problems must
be solved before reaching the maturity status
needed for embedded control system application:
existence of truly reusable components, specifi-
cation of component taxonomies, platform archi-
tecture and abstraction guidelines, consideration
of non functional aspects, embeddable component
description, component certification, smart com-
ponent libraries, component change management,
etc.

2.2 Dealing with dependability and resilience

Besides dealing with systems size, achieving the
required system dependability is another major
need. There is a manifest shortage of engineering
capability to build the dependable complex con-
trol systems of tomorrow. This is a very serious
problem because complex information systems are
required not only to provide increased levels of
performance (for example in plant-wide optimisa-
tion) or enhance the constructability and main-
tainability of systems (for example in X-by-Wire
systems) but also to increase or at least maintain
the levels of dependability of the smaller, reduced
intelligence, embedded systems of the past.

Machines are becoming much more skilful thanks
to the incorporation of massive doses of informa-
tion technology at the expenses of deteriorating
global system quality, which is a major threat that
forbids the application of intelligent technology in
some fields where dependability and /or adaptabil-
ity is essential.

Valuable contributions are coming from the sys-
tematic, model-based and proof-driven software
engineering approaches (e.g. formal methods for
correct system design (Benveniste et al. 2003));
but they have a serious limitation concerning our
capability of designing and analysing very com-
plex systems in the presence of state combinatorial
explosion and uncertainty and in guaranteeing
that the implementation process does not induce
system property violations.

3. THE APPROACH FROM AUTONOMY

An alternative approach is to move the respon-
sibility for correct operation into the system it-
self. That means moving the adaptation from
the implementation phase into the runtime phase.
During runtime the system perceives changes and
adapts to these changes to keep the mission as-
signed to it during the design phase.

Some interesting alternatives being currently ex-
plored are based on the implementation of ar-
chitectural mechanisms for self-organisation and
self-repair. These systems are built and started
in a base state and they follow adaptive life-
cycles based on the circumstances of the environ-
ment that surrounds the computing system. Of
major interest are the research efforts in fault-
tolerant systems, automatic learning, genetic pro-
gramming and autonomic computing. Some of
these approaches lack, however, the capability of
incorporating reasoning about the physical world
surrounding the controller in the process of mental
adaptation because they are too focused onto the
computing system itself.

IBM describes their autonomic computing initia-
tive as (Jacob et al. 2004):

” Autonomic computing is the ability of an IT in-
frastructure to adapt to change in accordance with
business policies and objectives. Quite simply, it is
about freeing IT professionals to focus on higher-
value tasks by making technology work smarter,
with business rules guiding systems to be self-
configuring, self-healing, self-optimizing, and self-
protecting.”

As we can see in Figure 3, this approach is fun-
damentally based in the implementation of inner
—homeostatic— control loops inside the software-
hardware system. It is interesting to see the simi-
larities between this architecture and advanced in-
telligent control architectures (Albus and Meystel
2001).

Similar approaches, even while more focalized into
specific tasks and disturbances, are those of fault-
tolerant computing (Shrivastava et al. 1993) or
reflective middleware (Gilani et al. 2004).

Autonomic Element

Analyse

Autonomic
Manager

3
Knowledge

Monitor Execute

Sensors ‘

Efectors

Managed
Element

Element

Fig. 3. Control loops in autonomic computing
architectures (adapted from (IBM 2003)).

4. THE APPROACH FROM MODELING

Another recent approach to build complex em-
bedded systems is model integrated computing. In
the words of Jonathan Sprinkle, Model-Integrated
Computing (MIC) is:

“A design methodology used to create and evolve
integrated, multiple-aspect models of computer-
based systems using concepts, relations, and model

composition principles to facilitate systems/software

engineering analysis of the models and automatic
synthesis of applications from the models.”

MIC addresses the problems of designing, creat-
ing, and evolving information systems by provid-
ing rich modeling environments including model
analysis and model-based program synthesis tools.
MIC is expected to simplify the process of cre-
ation and evolution of complex systems using in-
tegrated, multiple-aspect models. These models
include, but need not be limited to— processing
models, behavior models and hardware models
(see Figure 4).

Deep system models are built and analysed us-
ing tools provided by the modeling environment.
These models are later used to automatically gen-
erate the final system (see Figure 4). This means
that the models must necessarily capture the se-
mantic aspects of the final system and not just
the structural properties.

5. REFLECTION AND MODEL-BASED
REFLECTION

In some sense, the problems of the different ap-
proaches to adaptivity can be traced back to a
deep deficiency of control systems: artificial con-
trol systems do not fully understand their role

MODELS

Behaviour
Model Models Model
Building Analysis
Tools Processing Hardware Tools
Models Models

GENERATORS
System Configuration
Generator Generator DESIGN

ENVIRONMENT

RUNTIME
ENVIRONMENT

Fig. 4. Model-integrated computing can simplify
the construction and evolution of complex
systems.

and their perceptual flow in the terms and up
to the level necessary to provide the robust per-
formance required for critical systems. They are
trapped into their particular, engineering-made,
all-surrounding Matrix.

Our research project SOUL tries to overcome this
limitation. The objective of this research is to
explore new architectural approaches in the design
of intelligent controllers that attribute meaning
to complex patterns of sensory stimuli and are
able to exploit those meanings into the generation
of actions that, hopefully, will satisfy high-level,
meaningful goals.

MODELS
Behaviour
odels

Processing Hardware
Models Models

World Data

Fig. 5. The SOUL architecture uses explicit mean-
ing representation in the generation of control
actions.

Our consideration into the development of SOUL
is that this meaning-based control should be
done not only in terms of perception/action over
the external world but also in terms of percep-
tion/action over the internal world, i.e. the mind
and body of the agent itself.

In some sense, we can say that these systems do
have a true understanding of what is the mission
and what is going on around them. They will
be able to provide increased levels of system-
wide resilience required to properly maintain a
stable metahuman environment. Embedding the
capability of understanding the mission, and, in

MODELS
Behaviour
Model | ™ Models A Model
Building Analysis
Tools | — Processing Hardware a1 Tools
Models Models
Y GENERATORS ¥
(System) (Configuration >
Generator Generator
DESIGN

ENVIRONMENT

X

7

N RUNTIME
. ENVIRONMENT
Behaviour
Mode!
Processing | | Hardware
Models Models

(System
Generator

Engine

Meaning) ;

.

Runtime System

Fig. 6. The SOUL variant of the baseline model-integrated computing process includes runtime model-

based reflection.

human-machine systems, being able to properly
agree on this meaning with the human user, is a
critical step for providing a dependable computer-
based platform for human life.

We believe that if we want to construct a truly
adaptive system (a system with the autonomic
properties described in section 3) it must neces-
sarily do a semantic analysis of the information it
has about itself. This is the type of reasoning that
MIC tools can perform over their models.

In some sense, tools that are being developed to be
used by builders at the implementation phase can
find their “autonomic” use by the system itself
at the runtime phase. Reflective, model-based
autonomous systems will have deep introspection
capabilities that will let them achieve a high
degree of adaptability.

Classic adaptive control, or fault-tolerant control
uses plant models to change the control to new
plant conditions. Fault-tolerant computing uses
self models to keep the computation ongoing.
These advanced autonomous controllers will ex-
ploit models of themselves integrated into models
of the world to maximise mission-effectivity by
means of meaningful adaptation. We call them
conscious controllers. Conscious controllers will
exploit self models embedded in world models.

Interestingly enough, the complex control model
of SOUL, converges with recent trends in men-
tal architectures for machine consciousness (see
for example the work of (Holland and Goodman

2003), (Haikonen 2003) or
mall 2003)).

(Aleksander and Dun-

6. CONCLUSIONS

Trends in complex, software-intensive control sys-
tems show a continuous process of incorporating
mechanisms of self-representation and reflection
to improve performance and resilience. From par-
tial plant representations like those employed in
classic model-based adaptive controllers to more
encompassing plant+4controller mixed models, the
internal model principle is guiding control systems
architectural design to a scale that would match
the complexity of modern models of human aware-
ness and self-consciousness.

Following IBM’s description of their ”autonomic
computing” initiative, we are aimed at developing
computer-based controllers which are self-aware,
self-configuring, self-optimizing, self-healing, self-
protecting, and self-adapting. That means that
we expect to attain an increase of functionality,
constructibility and resilience in many system
functions by means of the incorporation into the
very controller of mechanisms for having a “self”.

Self-X functionality exploits models of the system
itself in the performance of model-based control
tasks that perceive, think about and act over the
system itself. These system models constitute the
very essence of meaning generation, the core of
machine consciousness.

An important problem being faced here is the
proper characterisation of what constitutes the
body of each agent or agency and what constitutes
the surrounding world (very different perspectives
can be found today e.g. in mobile robotics and
process control systems). This is a process of
engineering of selves, trying to achieve the ca-
pability of building ad-hoc artificial persons to
manage complex situations. Machine conscious-
ness research is, in fact, starting to look over what
was considered an uncrossable barrier between the
natural and the artificial. Using Ryle’s words, we
envision an artificial, scalable, version of our own
ghosts in the machines.

REFERENCES

Albus, James and Alexander Meystel (2001). En-
gineering of Mind: An Introduction to the Sci-
ence of Intelligent Systems. Wiley Series on
Intelligent Systems. Wiley. New York.

Aleksander, Igor and Barry Dunmall (2003). Ax-
ioms and tests for the presence of mini-
mal consciousness in agents. Journal of Con-
sciousness Studies 10(4-5), 7-18.

Astrom, Karl, Isidori, Alberto, Albertos, Pedro,
Blanke, Mogens, Schaufelberger, Walter and
Sanz, Ricardo, Eds.) (2000). Control of Com-
plex Systems. Springer. Berlin.

Benveniste, A., L. P. Carloni, P. Caspi and
A. L. Sangiovanni-Vincentelli (2003). Het-
erogeneous reactive systems modeling and
correct-by-construction deployment. In: Proc.
Int. Conf. Embedded Software (EMSOFT)
(R. Alur and I. Lee, Eds.).

Blum, Alex, Vaclav Cechticky, Alessandro Pasetti
and Walter Schaufelberger (2003). A java-
based framework for real-time control sys-
tems. In: Proceedings of 9" IEEE Interna-
tional Conference on Emerging Technologies
and Factory Automation. Lisbon, Portugal.
pp. 447-453.

Douglass, Bruce Powell (1999). Doing Hard Time.
Developing Real-Time Systems with UML,
Objects, Frameworks and Patterns. Object
Technology Series. Addison-Wesley. Reading,
MA.

EUSAI (2004). European symposium on ambient
intelligence. http://www.eusai.net/.

Gilani, Wasif, Nabeel Hasan Naqvi and Olaf
Spinczyk (2004). On adaptable middleware
product lines. In: Proceedings of the 3rd ACM
Workshop on Adaptive and Reflective Middle-
ware. Toronto,Canada.

Gunderson, Lance H. and Jr., Lowell Pritchard,
Eds.) (2002). Resilience and the Behavior Of
Large-Scale Systems. Island Press. Covelo,
CA.

Haikonen, Pentti O. (2003). The Cognitive Ap-
proach to Conscious Machines. Imprint Aca-
demic. Exeter.

Holland, Owen and Ron Goodman (2003). Robots
with internal models - a route to machine con-
sciousness?. Journal of Consciousness Studies
10(4-5), 77-109.

Holland, Owen, Ed.) (2003). Machine Conscious-
ness. Imprint Academic. Exeter, UK.

IBM (2003). An architectural blueprint for auto-
nomic computing. Technical report. IBM.
Jacob, Bart, Richard Lanyon-Hogg, Devap-
rasad K. Nadgir and Amr F. Yassin (2004). A
Practical Guide to the IBM Autonomic Com-

puting Toolkit. RedBooks. IBM.

Lieberherr, Karl, Doug Orleans and Johan
Ovlinger (2001). Aspect-Oriented Program-
ming with Adaptive Methods. Communica-
tions of the ACM 44(10), 39-41.

Sanz, Ricardo (2004). Co”: Converging trends in
complex software-intensive control. In: Sizth
Portuguese Conference on Automatic Con-
trol. Faro, Portugal.

Shrivastava, S.K., L. Mancini and B. Randell
(1993). The duality of fault-tolerant system
structures. Software: Practice and Fxperience
23(7), 773-798.

Szypersky, Clemens (1998). Component Software.
Beyond Object-Oriented Programming. ACM
Press / Addison-Wesley. Reading, MA.

Taylor, John G. (1999). The Race for Conscious-
ness. MIT Press. Cambridge, MA.

